Cybernetics And Systems Analysis logo
Editorial Board Announcements Abstracts Authors Archive
Cybernetics And Systems Analysis
International Theoretical Science Journal
-->

UDC 519.6
A.Ya. Bomba1, M.V. Boichura2


1 National University of Water Management and Natural Resources, Rivne, Ukraine

abomba@ukr.net

2 National University of Water Management and Natural Resources, Rivne, Ukraine

m.v.boichura@nuwm.edu.ua

IDENTIFYING THE STRUCTURE OF SOIL MASSIFS
BY NUMERICAL QUASICONFORMAL MAPPING METHODS

Abstract. A method of identifying the parameters of the structure of small-sized objects, which assumes the presence at the domain boundary (for each of the corresponding injections) of only equipotential lines (with given values of current or flow function) and streamlines (with known potential distributions), is adapted for the cases of image reconstruction of large soil massifs. A significant advantage of the developed algorithm over the known ones is the avoidance of the “traditional” procedure of artificial “cutting” of an infinite domain due to narrowing the localization of this singularity to the neighborhood of a certain point. Numerical experiments are carried out and their results are compared with the known solutions.

Keywords: electrical resistivity tomography, quasiconformal mappings, identification, inverse problems, numerical methods.


FULL TEXT

REFERENCES

  1. Loke M.H. Tutorial: 2-D and 3-D electrical imaging surveys. 2021. 136 p. URL: https://www. geotomosoft.com/coursenotes.zip.

  2. Kanli A.I. Applied geophysics with case studies on environmental, exploration and engineering geophysics. London: IntechOpen, 2019. 150 p. http://dx.doi.org/10.5772/intechopen.78490.

  3. Dahlin T., Zhou B. Multiple-gradient array measurements for multichannel 2D resistivity imaging. Near Surface Geophysics. 2006. Vol. 4, Iss. 2. P. 113–123. https://doi.org/10.3997/1873-0604.2005037.

  4. Bomba A., Boichura M., Sydorchuk B. Generalization of numerical quasiconformal mapping methods for geological problems. Eastern-European Journal of Enterprise Technologies. 2020. Vol. 5, N 4 (107). P. 45–54. https://doi.org/10.15587/1729-4061.2020.215045.

  5. Holder D. Electrical impedance tomography. Methods, history and applications. Bristol: Institute of Physics, 2005. 456 p.

  6. Modin I.N. Geophysical surveys for directional drilling for laying pipelines under roads. Inzhenernyye izyskaniya. 2015. N 5–6. P. 32–36. URL: http:// www.geomark.ru/journals_list/zhurnal-inzhenernye-izyskaniya-5-62015/?attach=2263.

  7. Zhou B., Bouzidi Y., Ullah S., Iqbal M.A. A full-range gradient survey for 2D electrical resistivity tomography. Near Surface Geophysics. 2020. Vol. 18, Iss. 6. P. 609–626. https://doi.org/10.1002/ nsg.12125.

  8. Aleardi M., Vinciguerra A., Hojat A. A geostatistical Markov chain Monte Carlo inversion algorithm for electrical resistivity tomography. Near Surface Geophysics. 2021. Vol. 19, N 1. P. 7–26. https:/doi.org/ 10.1002/nsg.12133.

  9. Bomba A.Ya., Kashtan S.S., Pryhornytsky D.O., Yaroshchak S.V. Methods of complex analysis [in Ukrainian]. Rivne: Nat. University of Water Management and Nature Management, 2013. 430 p.

  10. Bomba A., Boichura M. On a numerical quasiconformal mapping method for the medium parameters identification using applied quasipotential tomography. Mathematical Modeling and Computing. 2017. Vol. 4, N 1. P. 10–20. https://doi.org/10.23939/mmc2017.01.010.

  11. Bomba A., Boichura M. Identification of burst parameters using numerical quasiconformal mapping methods. International Journal of Applied Mathematics. 2020. Vol. 33, N 5. P. 903–917. http:// dx.doi.org/10.12732/ijam.v33i5.11.

  12. Bulavatsky V.M. Mathematical models and problems of fractional-differential dynamics of some relaxation filtration processes. Cybernetics and Systems Analysis. 2018. Vol. 54, N 5. P. 727–736. https://doi.org/10.1007/s10559-018-0074-4.

  13. Bohaienko V., Gladky A., Romashchenko M., Matiash T. Identification of fractional water transport model with -Caputo derivatives using particle swarm optimization algorithm. Applied Mathematics and Computation. 2021. Vol. 390. 125665. https://doi.org/10.1016/j.amc.2020.125665.

  14. Bohaienko V., Gladky A. Parameters identification for fractional-fractal model of filtration-consolidation using GPU. Proc. Fourth International Workshop on Computer Modeling and Intelligent Systems (CMIS-2021) (27 April 2021, Zaporizhzhia, Ukraine). Zaporizhzhia, 2021. CEUR Workshop Proceedings. 2021. Vol. 2864. P. 409–418. URL: http://ceur-ws.org/Vol-2864/paper36.pdf.

  15. Bohaienko V., Bulavatsky V. Fractional-fractal modeling of filtration-consolidation processes in saline saturated soils. Fractal and Fractional. 2020. Vol. 4, N 4. P. 1–11. https://doi.org/10.3390/ fractalfract4040059.

  16. Sergienko I.V., Petryk M.R., Fraissard J., Leclerc S. Highly efficient methods of the identification of competitive diffusion parameters in inhomogeneous media of nanoporous particles. Cybernetics and Systems Analysis. 2015. Vol. 51, N 4. P. 529–546. https://doi.org/10.1007/s10559-015-9744-7.

  17. Sergienko I.V., Deineka V.S. Optimal control of the parabolic system and identification of its parameters for the known heat flows. Cybernetics and Systems Analysis. 2014. Vol. 50, N 1. P. 38–59. https://doi.org/10.1007/s10559-014-9591-y.

  18. Vlasyuk A., Zhukovskyy V., Zhukovska N., Shatnyi S. Parallel computing optimization of two-dimensional mathematical modeling of contaminant migration in catalytic porous media. Proc 2020 10th International Conference on Advanced Computer Information Technologies (ACIT’2020). (16–18 September 2020, Deggendorf, Germany). Deggendorf, 2020. P. 23–28. https://doi.org/10.1109/ACIT49673.2020.9208878.

  19. Michuta O., Ivanchuk N. Martyniuk P., Ostapchuk O. A finite element study of elastic filtration in soils with thin inclusions. Eastern-European Journal of Enterprise Technologies. 2020. Vol. 5, N 5 (107). P. 41–48. https://doi.org/10.15587/1729-4061.2020.215047.




© 2021 Kibernetika.org. All rights reserved.