UDC 519.6
1 V.M. Glushkov Institute of Cybernetics, National Academy of Sciences of Ukraine, Kyiv, Ukraine
khimich505@gmail.com
|
|
ADAPTIVE COMPUTER TECHNOLOGIES FOR SOLVING PROBLEMS
OF COMPUTATIONAL AND APPLIED MATHEMATICS
Abstract. A technology is proposed for automatic solving of problems with innovative capabilities
on the class of problems: systems of linear algebraic equations. The efficiency of application of computer technologies
is considered from the point of view of implementing three basic paradigms of computer modeling: computer mathematics,
HPC, and intellectual interface. Realization of these factors as compared with traditional technologies allows substantial
redistribution of works in the process of mathematical modeling between the user and computer, shortening the terms
of development of applications for solving scientific and technical problems, and improving the quality of computer solutions.
Keywords: mathematical modeling, parallel computers, approximate data, mixed bit, neural network technologies, intelligent software.
FULL TEXT
REFERENCES
- Top 500, June 2021. URL: https://top500.org/statistics/list/.
- Numerical methods for a multiprocessor computer complex ES [in Russian]. Ed. I.N. Molchanov. Moscow: Zhukovsky VVIA, 1986. 401 p.
- Khimich A.N., Molchanov I.N., Popov A.V., Chistyakova T.V., Yakovlev M.F. Parallel algorithms for solving problems of computational mathematics [in Russian]. Kiev: Nauk. dumka, 2008. 247 p.
- Sergienko I.V, Molchanov I.N, Khimich A.N. Intelligent technologies of high-performance computing. Cybernetics and Systems Analysis. 2010. Vol. 46, N. 5. P. 833–844. https://doi.org/10.1007/s10559-010-9265-3.
- Khimich A.N., Popov A.V., Polyanko V.V. Algorithms of parallel computations for linear algebra problems with irregularly structured matrices. Cybernеtics and Systems Analysis. 2011. Vol. 47, N 6. P. 973–985. https://doi.org/0.1007/s10559-011-9377-4.
- Khimich A.N., Baranov A.Yu. Hybrid algorithm for solving linear systems with symmetric banded matrices. Komp'yuternaya matematika. 2013. N 3. P. 80–88.
- Khimich O.M., Polyanko V.V. Optimization of parallel iterative process for linear systems with sparse matrices. Teoriya optymalʹnykh rishenʹ. 2011. N 10. P. 47–53.
- Khimich OM, Sidoruk VA Hybrid algorithm for a linear least squares problem with a semi-definite sparse matrix. Teoriya optymalʹnykh rishenʹ. 2014. P. 106–113.
- Khimich A.N., Yakovlev M.F. The total error in calculating linear mathematical models by iterative methods. Cybernеtics and Systems Analysis. 2002. Vol. 38, N 5. P. 749–758. https://doi.org/10.1023/A:1021895010938.
- Khimich A.N. Estimates of the total error in solving systems of linear algebraic equations for matrices of arbitrary rank. Komp'yuternaya matematika. 2002. N 2. P. 41–49.
- Sergienko I.V., Khimich A.N., Yakovlev M.F. Methods for obtaining reliable solutions to systems of linear algebraic equations. Cybernеtics and Systems Analysis. 2011. Vol. 47, N 1. P. 62–73. https://doi.org/10.1007/s10559-011-9290-x.
- Khimich A.N, Nikolaevskaya E.A. Reliability analysis of computer solutions of systems of linear algebraic equations with approximate initial data. Cybernetics and Systems Analysis. 2008. Vol. 44, N 6. P. 863–874. https://doi.org/10.1007/s10559-008-9062-4.
- Nikolaevskaja E.A., Chimich A.N., Chistyakova T.V. Programming with multiple precision. Springer-Verlag. Studies in Computational Intelligence, 2012. P. 233. https://doi.org/10.1007/ 978-3-642-25673-8.
- Khimich O.M., Chistyakova T.V. Automatic research and solution of linear systems using increased accuracy. Proc. of the All-Ukrainian scientific-practical conference with international participation (Informatics and systems sciences) (Poltava, March 19-21, 2015). Poltava: PUET. 2015. P. 365–367.
- Buttari A., Langou J., Kurzak J., Dongarra J. A Class of parallel tiled linear algebra algorithms for multicore architectures. Parallel Computing. 2009. Vol. 35, Iss. 1. P. 38–53. https://doi.org/10.1016/j.parco.2008.10.002.
- Khimich O.M., Sidoruk V.A. Use of mixed bit in mathematical modeling. Mathematical and computer modeling. Series: Physical and Mathematical Sciences. Coll. Science. works. 2019. Iss. 19. P. 180–187. https://doi.org/10.32626/2308-5878.2019- 19.180-187.
- Khimich A., Sydoruk V., Yershov P. Intellectualization of computation based on neural networks for mathematical modeling. 2019 IEEE International Conference on Advanced Trends in Information Theory (ATIT). 2019. P. 445–448. https://doi.org/10.1109/ATIT49449. 2019.9030444.
- Supercomputer complex SКІТ. URL: http://icybcluster.org.ua.
- Khimich A.N., Polyanko V.V., Popov A.V., Rudich O.V. Solving problems of calculating the strength of structures on a MIMD computer. Artificial intelligence. 2008. N 3. P. 750–760.
- Khimich A.N., Molchanov I.N., Mova V.I., Perevozchikova O.L., Stryuchenko V.A., Popov A.V., Chistyakova T.V., Yakovlev M.F., Gerasimova T A.A., Zubatenko V.S., Gromovsky A.V., Nesterenko A.N., Polyanko V.V., Rudich O.V, Yushchenko R.A., Nikolaychuk A.A., Gorodetsky A.S. , Slobodyan Ya.E., Geraymovich Yu.D. Numerical software of intelligent MIMD computer Inpark [in Russian]. Kiev: Nauk. dumka, 2007. 221 p.
- Makhnenko V.I., Popov A.V., Semenov A.P., Khimich A.N., Yakovlev M.F. Mathematical modeling on MIMD computers of physical processes during welding. USiM. 2007. N 6. P. 80–87.
- Velikoivanenko E.A., Milenin A.S., Popov A.V., Sidoruk V.A., Khimich A.N. Methods of numerical forecasting of serviceability of welded structures on computers of hybrid architecture. Cybernetics and Systems Analysis. 2019. Vol. 55, N 1. P. 117–27. https://doi.org/10.1007/s10559-019-00117-8.