Cybernetics And Systems Analysis logo
Editorial Board Announcements Abstracts Authors Archive
Cybernetics And Systems Analysis
International Theoretical Science Journal
-->

UDC 519.21
M.M. Luz1, M.P. Moklyachuk2


1 BNP Paribas Cardif, Ukraine

maksim_luz@ukr.net

2 Taras Shevchenko National University of Kyiv, Kyiv, Ukraine

moklyachuk@gmail.com

MINIMAX FILTERING OF SEQUENCES WITH PERIODICALLY STATIONARY INCREMENTS

Abstract. The authors consider the problem of optimal filtering of linear functionals that depend on unknown values of the stochastic sequence with periodically stationary increments based on observations of the sequence with a stationary noise. For sequences with known spectral densities, formulas for the values of the root-mean-square errors and spectral characteristics of the optimal estimates of the functionals are obtained. Formulas that determine the least favorable spectral densities and minimax (robust) spectral characteristics of the optimal linear estimates of functionals are proposed in the case where spectral densities of the sequence are not known exactly while some sets of feasible spectral densities are given.

Keywords: periodically stationary increments, minimax-robust estimate, least favorable spectral density.


FULL TEXT

REFERENCES

  1. Dudek A., Hurd H., Wojtowicz W. PARMA methods based on Fourier representation of periodic coefficients. Wiley Interdisciplinary Reviews: Computational Statistics. 2016. Vol. 8, N 3. P. 130–149. https://doi.org/10.1002/wics.1380.

  2. Johansen S., Nielsen M.O. The role of initial values in conditional sum-of-squares estimation of nonstationary fractional time series models. Econom. Theory. 2016. Vol. 32, N 5. P. 1095–1139. https://doi.org/10.1017/S02664666150001.10.

  3. Reisen V.A., Zamprogno B., Palma W., Arteche J. A semiparametric approach to estimate two seasonal fractional parameters in the SARFIMA model. Math. Comput. Simul. 2014. Vol. 98. P. 1–17. https://doi.org/10.1016/j.matcom.2013.11.001.

  4. Box G.E.P., Jenkins G.M., Reinsel G.C., Ljung, G.M. Time series analysis, forecasting and control. 5rd ed., Hoboken, NJ: John Wiley and Sons, 2016. 712 p.

  5. Porter-Hudak S. An application of the seasonal fractionally differenced model to the monetary aggegrates. J. Am. Stat. Assoc. 1990. Vol. 85, N 410. P. 338–344. https://doi.org/10.1080/01621459.1990.10476206.

  6. Gladyshev E.G. Periodically correlated random sequences. Dokl. USSR Academy of Sciences. 1961. Vol. 137, N 2. P. 1026–1029.

  7. Napolitano A. Cyclostationarity: New trends and applications. Signal Process. 2016. Vol. 120. P. 385–408. https://doi.org/10.1016/j.sigpro.2015.09.011.

  8. Lund R. Choosing seasonal autocovariance structures: PARMA or SARMA. In: Bell WR, Holan SH, McElroy TS (eds). Economic time series: modelling and seasonality. London: Chapman and Hall, 2011. P. 63–80. https://doi.org/10.1201/b11823.

  9. Basawa I.V., Lund R., Shao Q. First-order seasonal autoregressive processes with periodically varying parameters. Stat. Probab. Lett. 2004. Vol. 67, N 4. P. 299–306. https://doi.org/10.1016/j.spl.2004.02.001.

  10. Reisen V.A., Monte E.Z., Franco G.C., Sgrancio A.M., Molinares F.A.F., Bondon P., Ziegelmann F.A., Abraham B. Robust estimation of fractional seasonal processes: Modeling and forecasting daily average SO2 concentrations. Math. Comput. Simul. 2018. Vol. 146. P. 27–43. https://doi.org/10.1016/j.matcom.2017.10.004.

  11. Grenander U. A prediction problem in game theory. Ark. Mat. 1957. Vol. 6. P. 371–379. https://doi.org/10.1007/BF02589429.

  12. Kassam S.A., Poor H.V. Robust techniques for signal processing: A survey. Proc. IEEE. 1985. Vol. 73, N 3. P. 433–481. https://doi.org/10.1109/PROC.1985.13167.

  13. Liu Y., Xue Yu. and Taniguchi M. Robust linear interpolation and extrapolation of stationary time series in Lp. J. Time Ser. Anal. 2020. Vol. 41, N 2. P. 229–248. https://doi.org/10.1111/jtsa.12502.

  14. Luz M., Moklyachuk M. Estimation of stochastic processes with stationary increments and cointegrated sequences. London: ISTE; Hoboken, NJ: John Wiley and Sons, 2019. 282 p. https://nlinelibrary.wiley.com/doi/book/10.1002/9781119663539.

  15. Moklyachuk M.P. Minimax-robust estimation problems for stationary stochastic sequences. Stat., Optim. Inf. Comput. 2015. Vol. 3, N 4. P. 348–419. https://doi.org/10.19139/soic.v3i4.173.

  16. Moklyachuk M.P., Golichenko I.I. Periodically correlated processes estimates. Saarbrucken:LAP Lambert Academic Publishing, 2016. 308 p. https:/www.lap-publishing.com/catalog/details/ store/gb/book/978-3-659-88507-5/periodically-correlated-processes-estimates.

  17. Moklyachuk M.P., Masyutka A.Yu. Minimax-robust estimation technique for stationary stochastic processes. Saarbrucken: LAP LAMBERT Academic Publishing, 2012. 296 p. https:/www.amazon.co.uk/Minimax-robust-estimation-technique-Mikhail-nique-Mikhail-Moklyachuk/dp/365919817X.

  18. Moklyachuk M.P., Sidei M.I., Masyutka O.Yu. Estimation of stochastic processes with missing observations. New York, NY: Nova Science Publishers, 2019. 334 p. https://novapublishers.com/shop/estimates-of-stochastic-processes-with-missing-observations.

  19. Gikhman I.I., Skorokhod A.V. The theory of stochastic processes. I. Berlin: Springer, 2004. 574 p. https://link.springer.com/book/10.1007/978-3-642-61943-4.

  20. Kolmogorov A.N. In: Shiryayev A.N. (Ed.) Selected works by A. N. Kolmogorov. Vol. II: Probability theory and mathematical statistics, Dordrecht etc.: Kluwer Academic Publishers. 1992. 579 p. https:/www.springer.com/gp/book/9789401050036.




© 2022 Kibernetika.org. All rights reserved.