UDC 519.2
1 National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute,” Kyiv, Ukraine
alex-dtn@ukr
|
2 National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute,” Kyiv, Ukraine
alexm1710@ukr.net.
|
DISTINGUISHING ATTACK ON THE NTRUCIPHER ENCRYPTION SCHEME
Abstract. A distinguishing attack on the NTRUCipher symmetric encryption scheme, defined over the residue ring modulo a cyclotomic polynomial over a finite field of simple order, is proposed. The attack is based on the existence of a homomorphism from this ring into the specified field and can be quite effective under sufficiently general conditions.
Keywords: lattice-based cryptography, symmetric encryption scheme, distinguishing attack, cyclotomic polynomial, NTRUCipher.
FULL TEXT
REFERENCES
- Valluri M.R. NTRUCipher-lattice based secret key encryption. arXiv:1710.01928V2.6/10/2017.
- Hoffstein J., Pipher J., Silverman J.H. NTRU: a new high speed public key cryptosystem. Algorithmic Number Theory (ANTS III). LNCS. 1998, Vol. 1423. P. 267–288.
- Matiyko A.A. Comparative analysis of NTRUEncrypt and NTRUCipher encryption algorithms. Matematychne ta komp’yuterne modelyuvannya. Ser.: Technical Sciences. 2019, Iss. 19. P. 81–87.
- Matiyko A.A. BKW attack on NTRUCIPHER and NTRUCIPHER + encryption systems. Information Technology and Security. 2020. Vol. 8, N 2. P. 164–176.
- Albrecht M.R., Curtis B.R., Deo A., Davidson A., Player R., Postlethwaite E.W., Virdia F., Wunderer T. Estimate all the {LWE, NTRU} schemes!. Cryptology ePrint Archive, Report 2018/331. URL: http://eprint.iacr.org/2018/331.
- Diop S., SanБ B.O., Seck M., Diarra N. NTRU-LPR IND-CPA: a new ideal lattice-based scheme. Cryptology ePrint Archive, Report 2018/109. URL: http://eprint.iacr.org/2018/109.
- Lidl R., Niederreiter G. Finite fields: In 2 vols. [Russian translation] Moscow: Mir, 1988. 818 p.
- Lybashevsky V., Peikert C., Regev O. On ideal lattices and learning with errors over rings. Advanced in Cryptology – EUROCRYPT 2010. LNCS 6110. Springer-Verlag, 2010. P. 1–23.
- Katz J., Lindell Y. Introduction to modern cryptography. CRC Press, 2015. 598 p.
- Hoeffding W. Probability inequalities for sums of bounded random variables. J. Amer. Statist. Assoc. 1963. Vol. 58, N 301. P. 13–30.
- Cheremushkin A.V. Lectures on arithmetic algorithms in cryptography [in Russian]. Moscow: MCNMO, 2002. 104 p.