UDC 519.21
ON THE PROBLEM OF MINIMAX INTERPOLATION OF STATIONARY SRQUENCES
Abstract. The problem of the mean-square optimal estimation of the linear functionals that depend on the unknown values of a stochastic stationary sequence from observations of the sequence with missing values is considered. Formulas for calculating the mean-square error and the spectral characteristic of the optimal linear estimate of the functionals are derived under the condition of spectral determinacy, where the spectral density of the sequence is exactly known. The minimax (robust) method of estimation is applied in the case where the spectral density of the sequence is not known exactly while some sets of admissible spectral densities are given. Formulas that determine the least favourable spectral densities and the minimax spectral characteristics are derived for some special sets of feasible densities.
Keywords: stationary sequence, minimax-robust estimate, least favourable spectral density, minimax spectral characteristic.
FULL TEXT
REFERENCES
- Kolmogorov A.N. In: Shiryayev A.N. (Eds.) Selected works by A.N. Kolmogorov. Vol. II: Probability theory and mathematical statistics, Dordrecht etc.: Kluwer Academic Publishers, 1992. 579 p.
URL: https://www.springer.com/gp/book/9789401050036.
- Wiener N. Extrapolation, interpolation and smoothing of stationary time series. With engineering applications. The M. I. T. Press, Massachusetts Institute of Technology, Cambridge, Mass., 1966. 163 p.
URL: https://mitpress.mit.edu/books/extrapolation-interpolation-and-smoothing-stationary-time-series.
- Yaglom A.M. Correlation theory of stationary and related random functions. Vol. 1, 2. Springer Series in Statistics, Springer-Verlag, New York etc., 1987.
- Rozanov Yu.A. Stationary stochastic processes. San Francisco; Cambridge; London; Amsterdam: Holden-Day, 1967. 211 p.
URL: https://www.tandfonline.com/doi/abs/10.1080/01621459.1968.11009342.
- Hannan E.J. Multiple time series. New York: John Wiley and Sons, 1970.
536 p. https://doi.org/10.1002/9780470316429.
- Vastola K.S., Poor H.V. An analysis of the effects of spectral uncertainty on Wiener filtering. Automatica. 1983.
Vol. 28. P. 289–293. https://doi.org/10.1016/0005-1098(83)90105-X.
- Grenander U. A prediction problem in game theory. Ark. Mat. 1957.
Vol. 6. P. 371–379. https://doi.org/10.1007/BF02589429.
- Kassam S.A., Poor H.V. Robust techniques for signal processing: A survey. Proc. IEEE. 1985.
Vol. 73, N. 3. P. 433–481. https://doi.org/10.1109/PROC.1985.13167.
- Liu Y., Xue Yu., Taniguchi, M. Robust linear interpolation and extrapolation of stationary time series in Lp. J. Time Ser. Anal. 2020.
Vol. 41, N 2. P. 229–248. https://doi.org/10.1111/jtsa.12502.
- Luz M., Moklyachuk M. Estimation of Stochastic Processes with Stationary Increments and Cointegrated Sequences.
London: ISTE; Hoboken, NJ: John Wiley and Sons, 2019.
282 p. https://onlinelibrary.wiley.com/doi/book/10.1002/9781119663539.
- Moklyachuk M.P. Minimax-robust estimation problems for stationary stochastic sequences. Stat., Optim. Inf. Comput. 2015.
Vol. 3, N 4. P. 348–419. https://doi.org/10.19139/soic.v3i4.173.
- Moklyachuk M.P., Golichenko I.I. Periodically correlated processes estimates.
Saarbrucken: LAP Lambert Academic Publishing. 2016.
308 p. https://www.lap-publishing.com/catalog/details//store/gb/book/978-3-659-88507-5/periodically-correlated-processes-estimates.
- Moklyachuk M.P., Masyutka A.Yu. Minimax-robust estimation technique for stationary stochastic processes. Saarbrucken: LAP Lambert Academic Publishing, 2012. 296 p.
URL: https://www.amazon.co.uk/Minimax-robust-estimation-technique-Mikhail-Moklyachuk/dp/365919817X.
- Moklyachuk M.P., Sidei M.I., Masyutka, O.Yu. Estimation of stochastic processes with missing observations. New York: Nova Science Publishers, 2019.
334 p. https://novapublishers.com/shop/estimates-of-stochastic-processes-with-missing-observations.
- Gikhman I.I., Skorokhod A.V. The theory of stochastic processes. I. Berlin: Springer, 2004.
574 p. https://link.springer.com/book/10.1007/978-3-642-61943-4.
- Salehi H. Algorithms for linear interpolator and interpolation error for minimal stationary stochastic processes. Ann. Probab. 1979.
Vol. 7, N 5. P. 840–846. https://www.jstor.org/stable/2243305.
- Pshenichnyj B.N. Necessary conditions of an extremum, Pure and Applied mathematics. 4. New York: Marcel Dekker, 1971.
248 p. https://www.routledge.com/Necessary-Conditions-for-an-Extremum/Pshenichnyi/p/book/9780367452124.
- Rockafellar R.T. Convex аnalysis. Princeton: NJ: Princeton University Press, 1997.
451 p. https://press.princeton.edu/books/paperback/9780691015866/convex-analysis.
- Krein M.G., Nudelman A.A. The Markov moment problem and extremal problems. Translations of Mathematical Monographs. Vol. 50. Providence, R.I.: American Mathematical Society, 1977. 417 p.