Cybernetics And Systems Analysis logo
Editorial Board Announcements Abstracts Authors Archive
Cybernetics And Systems Analysis
International Theoretical Science Journal
-->

UDC 517.9: 519.6
V.M. Bulavatsky1, V.O. Bohaienko2


1 V.M. Glushkov Institute of Cybernetics,
National Academy of Sciences of Ukraine,
Kyiv, Ukraine

v_bulav@ukr.net

2 V.M. Glushkov Institute of Cybernetics,
National Academy of Sciences of Ukraine,
Kyiv, Ukraine

sevab@ukr.net

BOUNDARY-VALUE PROBLEMS FOR SPACE-TIME FRACTIONAL DIFFERENTIAL
FILTRATION DYNAMICS IN FRACTURED-POROUS MEDIA

Abstract. Closed-form solutions are obtained for some non-stationary boundary-value problems of filtration dynamics in fractured-porous formations, posed within the framework of fractional-differential mathematical models, taking into account the space-time nonlocality of the process. The indicated mathematical models of anomalous filtration dynamics are formulated using the Hilfer or Caputo derivatives with respect to the time variable and the Riemann–Liouville derivative with respect to the geometric variable. Along with direct filtration problems, we also consider the inverse boundary-value problem of determining the unknown source function that depends only on the geometric variable. Conditions of the existence of regular solutions for the considered problems are given .

Keywords: mathematical modeling, fractional-differential dynamics of filtration processes, fractured-porous media, non-classical models, Hilfer, Caputo, and Riemann–Liouville derivatives, boundary value problems, closed-form solutions, numerical solutions.


FULL TEXT

REFERENCES

  1. Polubarinova-Kochina P.Ya., Pryazhinskaya V.G., Emikh V.N. Mathematical methods in irrigation [in Russian]. Moscow: Nauka, 1969. 414 p.

  2. Lyashko I.I., Demchenko L.I., Mistetsky G.E. Numerical solution of problems of heat and mass transfer in porous media [in Russian]. Kyiv: Nauk. dumka, 1991. 264 p.

  3. Lyashko S.I., Klyushin D.A., Timoshenko A.A., Lyashko N.I., Bondar E.S. Optimal control of intensity of water point sources in unsaturated porous medium. Journal of Automation and Information Science. 2019. Vol. 51, N 7. P. 24–33.

  4. Uchaikin V.V. Method of fractional derivatives [in Russian]. Ulyanovsk: ‹Artichoke›, 2008. 512 p.

  5. Mainardi F. Fractional calculus and waves in linear viscoelasticity. London: Imperial College Press, 2010. 368 p.

  6. Bulavatsky V.M., Kryvonos Iu.G., Skopetsky V.V. Nonclassical mathematical models of heat and mass transfer processes [in Ukrainian]. Kyiv: Nauk. dumka, 2005. 283 p.

  7. Khasanov M.M., Bulgakova G.T. Nonlinear and nonequilibrium effects in rheologically complex media [in Russian]. Moscow; Izhevsk: In-t komp'yuter. issled., 2003. 288 p.

  8. Sandev T.,Tomovsky Z. Fractional equations and models. Theory and applications. Cham, Switzerland: Springer Nature Switzerland AG, 2019. 344 p.

  9. Atanackovic T.M., Pilipovic S., Stankovic B., Zorica D. Fractional calculus with applications in mechanics. Hoboken: John Willey&Sons Inc, 2014. 406 p.

  10. Allwright A., Atangana, A. Fractal advection-dispersion equation for groundwater transport in fractured aquifers with self-similarities. The European Physical Journal Plus. 2018.Vol. 133, N 2. P. 1–14.

  11. Kochubei A.N. Distributed order calculus and equations of ultraslow diffusion. Journ. Math. Anal. Appl. 2008. Vol. 340. P. 252–281.

  12. Chechkin A.V., Gorenflo R., Sokolov I.M., Gonchar V.Y. Distributed order time fractional diffusion equation. Fract. Calc. Appl. Anal. 2003. N 6. P. 259–257.

  13. Bogaenko V., Bulavatsky V. Fractional-fractal modeling of filtration- consolidation processes in saline saturated soils. Fractal and Fractional. 2020. Vol. 59, N 4. P. 2–12.

  14. Bulavatsky V.M. Mathematical modeling of fractional differential filtration dynamics based on models with Hilfer–Prabhakar derivative. Cybernetics and Systems Analysis. 2017. Vol. 53, N 2. P. 204–216.

  15. Bulavatsky V.M., Bogaenko V.A. Mathematical modeling of dynamics of the nonequilibrium in time convective diffusion process in domain with free boundaries. Cybernetics and Systems Analysis. 2016. Vol. 52, N 3. P. 427–440.

  16. Barenblatt G.I., Zheltov Yu.P. On the basic equations of filtration of homogeneous fluids in fractured rocks. Dokl. AN SSSR. 1960. Vol. 132, Iss. 3. P. 545–548.

  17. Barenblatt G.I., Zheltov Yu.P., Kochina I.N. On the basic ideas of the theory of filtration of homogeneous fluids in fractured rocks. Prikl. matem. i mekh. 1960. Vol. 24, Iss. 3. P. 852–864.

  18. Barenblatt G.I., Entov V.N., Ryzhik V.M. Movement of liquids and gases in natural reservoirs [in Russian]. Moscow: Nedra, 1984. 303 p.

  19. Nikolaevsky V.N., Basniev K.S., Gorbunov A.T., Zotov G.A. Mechanics of saturated porous media [in Russan]. Moscow: Nedra, 1970. 339 p.

  20. Hilfer R. Fractional time evolution. Applications of Fractional Calculus in Physics. Ed. Hilfer R. Singapore: World scientific, 2000. P. 87–130.

  21. Kilbas A.A., Srivastava H.M., Trujillo J.J. Theory and applications of fractional differential equations. Amsterdam: Elsevier, 2006. 523 p.

  22. Gorenflo R., Kilbas A.A., Mainardi F., Rogosin S.V. Mittag-Leffler functions, related topics and applications. Berlin: Springer Verlag, 2014. 454 p.

  23. Samko S.G., Kilbas A.A., Marichev O.I. Fractional integrals and derivatives and some of their applications [in Russian]. Minsk: Nauka i tekhnika, 1987. 688 p.

  24. Nakhushev A.M. Fractional calculus and its application [in Russian]. Moscow: Fizmatlit, 2003. 272 p.

  25. Aleroev T.S., Kirane M., Tang Y.-F. Boundary-value problems for differential equations of fractional order. Journal of Mathematical Science. 2013. Vol. 194, N 5. P. 499–512.

  26. Khasambiev M.V., Aleroev T.S. Boundary-value problem for one-dimensional fractional differential advection-diffusion equation. Vestn. Mosk. gos. stroit. un-ta. 2014. N 6. P. 71–76.

  27. Aleroev T.S., Kirane M., Malik S.A. Determination of source term for a time fractional diffusion equation with an integral type over-determining condition. Electronic Journal of Differential Equations. 2013. Vol. 270. P. 1–16.

  28. Plociniczak L. Eigenvalue asymptotics for a fractional boundary-value problem. Applied Mathematics and Computation. 2014. Vol. 241. P. 125–128.

  29. Lin Y., Xu C. Finite difference/spectral approximations for the time-fractional diffusion equation. Journ. Comput. Phys. 2007. Vol. 225, N 2. P. 1533–1552.

  30. Tadjeran C., Meerschaert H.M., Scheffler H.P. A second-order accurate numerical approximation for the fractional diffusion equation. Journ. Comput. Phys. 2006. Vol. 213, N 1. P. 205–213.

  31. Deng Z.Q., Singh V.P., Bengtsson L. Numerical solution of fractional advection-dispersion equation. Journ. Hydraul. Eng. (ASCE). 2004. Vol. 130, N 5. P. 422–431.




© 2022 Kibernetika.org. All rights reserved.