Cybernetics And Systems Analysis logo
Editorial Board Announcements Abstracts Authors Archive
Cybernetics And Systems Analysis
International Theoretical Science Journal
-->

UDC 519.8
T.T. Lebedeva1, N.V. Semenova2, T.I. Sergienko3


1 V.M. Glushkov Institute of Cybernetics, National Academy of Sciences of Ukraine, Kyiv, Ukraine

lebedevatt@gmail.com

2 V.M. Glushkov Institute of Cybernetics, National Academy of Sciences of Ukraine, Kyiv, Ukraine

nvsemenova@meta.ua

3 V.M. Glushkov Institute of Cybernetics, National Academy of Sciences of Ukraine, Kyiv, Ukraine

taniaser62@gmail.com

STABILITY AND REGULARIZATION OF VECTOR OPTIMIZATION PROBLEMS
WITH POSSIBLE PERTURBATIONS OF CRITERIA

Abstract. The article is devoted to new results related to the stability and regularization of vector (multicriteria) optimization problems for possible perturbations of the input data of a vector criterion consisting of quadratic or linear functions. The stability of problems with quadratic criteria for finding solutions that are Slater-optimal is proved. In the case of Pareto optimization, an approach to regularization of problems with linear criterion functions is developed.

Keywords: vector problem, Pareto-optimal solutions, Slater set, stability with respect to vector criterion, perturbations of initial data, regularization.


FULL TEXT

REFERENCES

  1. Sergienko I.V., Kozeratskaya L.N., Lebedeva T.T. Stability and parametric analysis of discrete optimization problems [in Russian]. Kyiv: Nauk. Dumka, 1995. 170 p.

  2. Sergienko I.V., Shilo V.P. Discrete optimization problems: problems, solution methods, research [in Russian]. Kyiv: Nauk. Dumka, 2003. 264 p.

  3. Bank B., Guddat J., Klatte D., Kummer B., Tammer K. Non-liniar parametric optimization. Berlin: Akademie-Verlag, 1982. 226 p.

  4. Mathematical optimization: issues of solvability and stability [in Russian]. Eds. E.G. Belousov, B. Bank. Moscow: Mosk. un-ty, 1986. 216 p.

  5. Belousov E.G., Andronov V.G. Solvability and stability of polynomial programming problems [in Russian]. Moscow: Mosk. un-ty, 1993. 172 p.

  6. Greenberg H. An annotated bibliography for post-solution analysis in mixed integer and combinatorial optimization. In: Advances in Computational and Stochastic Optimization, Logic Programming and Heuristic Search. D.L. Woodruff (ed.). New York: Springer Science+Business Media, 1998. Р. 97–148. https://doi.org/10.1007/978-1-4757-2807-1_4.

  7. Emelichev V.A., Podkopaev D.P. Stability and regularization of vector problems of integer linear programming. Diskretnyy analiz i issledovaniye operatsiy. 2001. Ser. 2. Vol. 8, N 1. P. 47–69.

  8. Emelichev V.A., Gurevsky E.E. On regularization of vector problems of integer quadratic programming. Kibernetika i sistemnyj analiz. 2009. N 2. P. 128–134.

  9. Emelichev V.A., Kotov V.M., Kuzmin K.G., Lebedeva T.T., Semenova N.V., Sergienko T.I. Stability and effective algorithms for solving multiobjective discrete optimization problems with incomplete information. Journal of Automation and Information Sciences. 2014. Vol. 46, N 2. P. 27–41.

  10. Pareto V. Manuel d’economie politique. Qiard.-Paris, 1909.

  11. Steuer R. Multiple criteria optimization: theory, computation and application. New York: John Wiley, 1986. 546 р.

  12. Ehrgott M. Multicriteria optimization. Berlin; Heidelberg: Springer, 2005. 323 p.

  13. Johannes J. Vector optimization. Theory, applications, and extensions. Second edition. Berlin; Heidelberg: Springer-Verlag, 2011. 481 p.

  14. Hadamard J. Sur les problems aux derives partielles et leur signification physique. Princeton University Bulletin. 1902. Vol. 13. P. 49–52.

  15. Kozeratskaya L.N., Lebedeva T.T., Sergienko T.I. Mixed integer vector optimization: Stability issues. Cybernetics. 1991. Vol. 27, N 1. P. 76–80.

  16. Kozeratskaya L.N., Lebedeva T.T., Sergienko T.I. Regularization of integer vector optimization problems. Cybernetics and Systems Analysis. 1993. Vol. 29, N 3. P. 455–458.

  17. Kozeratskaya L.N. Vector optimization problems: Stability in the decision space and in the space of alternatives. Cybernetics and Systems Analysis. 1994. Vol. 30, N. 6. P. 891–899.

  18. Sergienko I.V., Lebedeva T.T., Semenova N.V. Existence of solutions in vector optimization problems. Cybernetics and Systems Analysis. 2000. Vol. 36, N 6. P. 823–828.

  19. Lebedeva, T.T., Semenova N.V., Sergienko T.I. Stability of vector problems of integer optimization: Relationship with the stability of sets of optimal and nonoptimal solutions. Cybernetics and Systems Analysis. 2005. Vol. 41, N. 4. P. 551–558.

  20. Lebedeva T.T., Semenova N.V., Sergienko T.I. Qualitative characteristics of the stability vector discrete optimization problems with different optimality principles. Cybernetics and Systems Analysis. 2014. Vol. 50, N. 2. P. 228–233.

  21. Lebedeva T.T., Semenova N.V., Sergienko T.I. Properties of perturbed cones ordering the set of feasible solutions of vector optimization problem. Cybernetics and Systems Analysis. 2014. Vol. 50, N. 5. P. 712–717.

  22. Lebedeva T.T., Semenova N.V., Sergienko T.I. Multi-objective optimization problem: stability against perturbations of input data in vector-valued criterion. Cybernetics and Systems Analysis. 2020. Vol. 56, N 6. P. 953–958.

  23. Lyashko I.I., Emelianov V.F., Boyarchuk O.K. Mathematical analysis. Part 1 [in Ukrainian]. Kyiv: Vishcha shkola. 1992. 495 p.




© 2022 Kibernetika.org. All rights reserved.