Cybernetics And Systems Analysis logo
Editorial Board Announcements Abstracts Authors Archive
Cybernetics And Systems Analysis
International Theoretical Science Journal
-->

UDC 621.396.67, 629.7.077, 629.7.075
O. Volkov1, M. Komar2, D. Rachkovskij3, D. Volosheniuk4


1 International Research and Training Center for Information Technologies and Systems of the NAS of Ukraine and the MES of Ukraine, Kyiv, Ukraine

Alexvolk@ukr.net

2 International Research and Training Center for Information Technologies and Systems of the NAS of Ukraine and the MES of Ukraine, Kyiv, Ukraine

nickkomar08@gmail.com

3 International Research and Training Center for Information Technologies and Systems of the NAS of Ukraine and the MES of Ukraine, Kyiv, Ukraine

dar@infrm.kiev.ua

4 International Research and Training Center for Information Technologies and Systems of the NAS of Ukraine and the MES of Ukraine, Kyiv, Ukraine

p-h-o-e-n-i-x@ukr.net

TECHNOLOGY OF AUTONOMOUS TAKE-OFF AND LANDING FOR THE MODERN
NAVIGATION AND PILOTAGE COMPLEX OF THE UNMANNED AERIAL VEHICLE

Abstract. A technology of autonomous take-off and landing of an unmanned aerial vehicle is developed. The aim of the study is to increase the efficiency of the tasks that are faced by unmanned aerial vehicles. It is shown that the application of the proposed technology will make it possible to significantly increase the autonomy of take-off and landing from a wide range of initial conditions. It is demonstrated that the developed technology does not involve complex maneuvers for landing an unmanned aerial vehicle. An advantage of the technology is the ability to operate with common types of modern autopilots.

Keywords: autonomy, take-off, landing, unmanned aerial vehicle, ATOL, control.


FULL TEXT

REFERENCES

  1. Volkov O., Komar M., Volosheniuk D. Devising an image processing method for transport infrastructure monitoring systems. Eastern-European Journal of Enterprise Technologies. 2021. Vol. 4, N 2(112). P. 18–25. doi.org/10.15587/1729-4061.2021.239084 .

  2. Osipov Yu.M., Orlov S.V. Launch of light unmanned aerial vehicles. Systemy ozbroyennya i viysʹkova tekhnika. 2015. N. 3. P. 116–119.

  3. Gu H., Lyu X., Li Z., Shen S., Zhang F. Development and experimental verification of a hybrid vertical take-off and landing (VTOL) unmanned aerial vehicle (UAV). Proc. 2017 International Conference on Unmanned Aircraft Systems (ICUAS) (13–16 June 2017, Miami, FL, USA). Miami, 2017. P. 160–169. doi.org/10.1109/ICUAS.2017.7991420.

  4. Daibing Z., Xun W., Weiwei K. Autonomous control of running takeoff and landing for a fixed-wing unmanned aerial vehicle. Proc. 2012 12th International Conference on Control Automation Robotics & Vision (ICARCV) (5–7 December 2012, Guangzhou, China). Guangzhou, 2012. P. 990–994. doi.org/10.1109/ICARCV.2012.6485292 .

  5. Ladyzhynska-Kozdras E., Sibilska-Mroziewicz A., Czubaj S., Falkowski K., Sibilski K., Wrblewski W. Take-off and landing magnetic system for UAV carriers. Journal of Marine Engineering & Technology. 2017. Vol. 16, Iss. 4. P. 298–304. doi.org/10.1080/ 20464177.2017.1369720.

  6. Crowther W. Perched landing and takeoff for fixed wing UAV’s. Proc. RTO AVT Symposium on Unmanned Vehicles for Aerial, Ground and Naval Military Operations (9–13 October 2000, Ankara, Turkey). Ankara, 2000. RTO MP-052. P. 19-1–19-10.

  7. Xiong H., Li T., Li H., Yu C. A preliminary research on performance prediction model of catapult launched take-off for a large wingspan unmanned aerial vehicle. In: Complex Systems Design & Management. Krob D., Li L., Yao J., Zhang H., Zhang X. (Eds). Cham: Springer, 2021. P. 467–467. doi.org/10.1007/978-3-030-73539-5_37.

  8. Zou Y., Meng Z. Coordinated trajectory tracking of multiple vertical take-off and landing UAVs. Automatica. 2019. Vol. 99. P. 33–40. doi.org/10.1016/j.automatica.2018.10.011 .

  9. Klochan A.E., Al-Ammouri A., Abdulsalam H.I.S. Advanced UAV landing system based on polarimetrie technologies. Proc. 2017 IEEE 4th International Conference Actual Problems of Unmanned Aerial Vehicles Developments (APUAVD) (17–19 October 2017, Kyiv, Ukraine). Kyiv, 2017. P. 147–150. doi.org/10.1109/APUAVD.2017.8308796.

  10. Muskardin T., Balmer G., Persson L., Wlach S., Laiacker M., Ollero A., Kindak K. A novel landing system to increase payload capacity and operational availability of high altitude long endurance UAVs. Journal of Intelligent & Robotic Systems. 2017. Vol. 88, N 2. P. 597–618. doi.org/10.1007/s10846-017-0475-z .

  11. Kugler M.E., Heller M., Holzapfel F. Automatic take-off and landing on the maiden flight of a novel fixed-wing UAV. Proc. 2018 Flight Testing Conference (25–29 June 2018, Atlanta, Georgia, USA). Atlanta, 2018. P. 4275. doi.org/10.2514/6.2018-4275.

  12. Steinleitner A., Frenzel V., Pfeifle O., Denzel J., Fichter W. Automatic take-off and landing of tailwheel aircraft with incremental nonlinear dynamic inversion. Proc. AIAA SCITECH 2022 Forum (3–7 January 2022, San Diego, CA & Virtual, USA). San Diego, 2022. P. 1228. doi.org/10.2514/6.2022-1228.

  13. Kugler M.E., Holzapfel F. Parameterization and computation of automatic take-off and landing trajectories for fixed-wing UAV. Proc. 17th AIAA Aviation Technology, Integration, and Operations Conference (5–9 June 2017, Denver, Colorado, USA). Denver, 2017. P. 3421. doi.org/10.2514/6.2017-3421 .

  14. Rogalski T., Nowak D., Waek ., D., Samolej S. Control system for aircraft take-off and landing based on modified PID controllers. MATEC Web of Conferences. 2019. Vol. 252. P. 06008. doi.org/10.1051/matecconf/201925206008.

  15. Ramos F.J. Overview of UAS control stations. In: Encyclopedia of Aerospace Engineering. UAS, UAS Design and Subsystems. 2016. P. 113. doi.org/10.1002/9780470686652.eae1153 .

  16. Gritsenko V., Volkov O., Komar M., Voloshenyuk D. Integral adaptive autopilot for an unmanned aerial vehicle. Aviation. 2018. Vol. 22, N 4. P. 129–135. doi.org/10.3846/aviation.2018.6413 .

  17. Kleyko D., Osipov E., Rachkovskij D.A. Modification of holographic graph neuron using sparse distributed representations. Procedia Computer Science. 2016. Vol. 88. P. 39–45. doi.org/10.1016/j.procs.2016.07.404.

  18. Kleyko D., Rachkovskij D.A., Osipov E., Rahimi A. A survey on hyperdimensional computing aka vector symbolic architectures, part I: Models and data transformations. ACM Computing Surveys. 2022. doi.org/10.1145/3538531.

  19. Kleyko D., Rachkovskij D.A., Osipov E., Rahimi A. A survey on hyperdimensional computing aka vector symbolic architectures, part II: Applications, cognitive models, and challenges. Accepted, ACM Computing Surveys. 2022. Available online: arXiv:2112.15424.

  20. Rachkovskij D.A. Formation of similarity-reflecting binary vectors with random binary projections. Cybernetics and Systems Analysis. 2015. Vol. 51, N 2. P. 313–323. doi.org/10.1007/s10559-015-9723-z .

  21. Rachkovskij D.A. Real-valued vectors for fast distance and similarity estimation. Cybernetics and Systems Analysis. 2016. Vol. 52, N 6. P. 967–988. doi.org/10.1007/s10559-016-9899-x .

  22. Rachkovskij D.A. Binary vectors for fast distance and similarity estimation. Cybernetics and Systems Analysis. 2017. Vol. 53, N 1. P. 138–156. doi.org/10.1007/s10559-017-9914-x .




© 2022 Kibernetika.org. All rights reserved.