UDC 517.11+519.92+519.246+519.711
1 Kyiv National University of Technologies and Design, Kyiv, Ukraine
min_14@ukr.net
|
|
FORECASTING OF FUZZY TIME SERIES BASED ON THE CONCEPT
OF NEAREST FSAND TENSOR MODELS OF TIME SERIES
Abstract. Forecasting of fuzzy time series is considered by presenting a standard fuzzy set in the form of a tensor obtained as a result of the tensor product of components, forming a tensor sequence whose last element (the predicted fuzzy set) is calculated as an incomplete tensor (with missing elements). Singular value decomposition of the restored tensor allows obtaining a subset of ordered pairs that is closest (in terms of the F-norm) to the predicted fuzzy set. An example of predicting a fuzzy time series is given.
Keywords: fuzzy set, tensor, missing data, singular value decomposition, F-norm.
full text
REFERENCES
- Afanas'eva T.V., Namestnikov A.M., Perfil'eva I.G., Romanov A.A., Yarushkina N.G. Time series forecasting: fuzzy models [in Russian]. Ed. N.G. Yarushkina. Ulyanovsk: UlGTU, 2014. 145 p.
- Acar E., Dunlavy D.M., Kolda T.G., Mrup M. Scalable tensor factorizations for incomplete data. Chemometrics and Intelligent Laboratory Systems. 2011. Vol. 106, Iss. 1 Р. 41–56. http://doi.org/10.1016/j.chemolab.2010.08.004.
- Sahin A., Dodurka M.F., Kumbasar T., Yesil E., Siradag S. Review study on fuzzy time series and their applications in the last fifteen years. International Fuzzy Systems Symposium (FUZZYSS’15). 2015. Vol. 4. P. 166–171. URL: https://www.researchgate.net/pub-lication/303523611.
- Mohammed Eid Awad Alqatqat, Ma Tie Feng. Methods in fuzzy time series predic-tion with applications in production and consumption electric. American Journal of Mathema tics and Statistics. 2020. Vol. 10(3). P. 79–95. http://doi.org/10.5923/j.ajms.20201003.03.
- Qisen Caia, Defu Zhanga, Bo Wu, Stehpen C.H. Leung. A novel stock forecasting model based on fuzzy time series and genetic algorithm. Procedia Computer Science. 2013. Vol. 18. P. 1155–1162 http://doi.org/10.1016/j.procs.2013.05.281.
- Kahneman D. Thinking fast and slow [Russian translation]. 3rd Ed. Kyiv: Nash format, 2019. 480 p.
- Huachun Tan, Yuankai Wu, Guangdong Feng, Wuhong Wang, Bin Ran. A new traffic prediction method based on dynamic tensor completion. Procedia — Social and Behavioral Sciences. 2013. Vol. 96. P. 2431–2442.
- Minaev Yu.N., Filimonova O.Yu., Minaeva Yu.I. Kronecker (tensor) models of fuzzy-multiple granules. Kibernetika i sistemnyj analiz. 2014. Vol. 50, N 4. P.42–52.
- Minaev Y.N., Filimonova O.Y., Minaeva J.I., Filimonov G.A. Fuzzy mathematics with limited possibilities for assigning membership functions. Cybernetics and Systems Analysis. 2020. Vol. 56, N 1. P. 29–39. https://doi.org/10.1007/s10559-020-00218-9.
- Acar E., Kolda T.G., Dunlavy D.M., Mоrup M. Scalable tensor factorizations with missing data. arXiv:1005.2197 [math.NA]. 12 May 2010. 25 р.
- Tomasi G., Bro R. PARAFAC and missing values. Chemometrics and Intelligent Laboratory Systems. 2005. Vol. 75. P. 163–180.
- Papalexakis E.E., Faloutsos C., Sidiropoulos N.D. Tensors for data mining and data fusion: Models, applications, and scalable algorithms. ACM Transactions on Intelligent Systems and Technology. 2016. Vol. 8, N 2. P. 1–44.
- Rogers M., Li L., Russell S. Multilinear dynamical systems for tensor time series. URL: https://ptolemy.berkeley.edu/projects/robotics/pubs/26/nips13-tensor.pdf.
- Chena X., Hea Z., Sunb L. A Bayesian tensor decomposition approach for spatiotemporal traffic data imputation. Preprint. October 2018. 17 p. URL: https://www.researchgate.net/publication/328560889.
- Yaru Su, Xiaohui Wu, Wenxi Liu. Low-rank tensor completion by sum of tensor nuc-lear norm minimization. IEEE Access. 2019. Vol. 7. Р. 134943–134953. http://doi.org/10.1109/ACCESS.2019.2940664.
- Song Q., Chissom B.S. Fuzzy time series and its models. Fuzzy Sets and Systems. 1993. Vol. 54, N 3. P. 269–277.
- Ming-Tao Chou. Fuzzy forecast based on fuzzy time series. In: Time Series Analysis — Data, Methods, and Applications. Chun-Kit Ngan (Ed.). http://doi.org/10.5772/intechopen.82843.
- Song Q., Ge H., Caverlee J., Hu X. Tensor completion algorithms in big data analytics. arXiv:1711.10105v2 [stat.ML]. 3 May 2018. 44 р.
- Bader B.W., Kolda T.G. Tensor toolbox for MATLAB, Version 3.2.1. URL: https://www.tensor toolbox.org.
- Kolda T., Bader B.W., Acar A., E. NMN Dunlavy D., Bassett R., Battaglino C.J. Plantenga T., Chi E., Hansen S. and USDOE. Tensor Toolbox for MATLAB v. 3.0. Computer software. URL: doi:10.11578/dc.20201001.24.