Cybernetics And Systems Analysis logo
Editorial Board Announcements Abstracts Authors Archive
Cybernetics And Systems Analysis
International Theoretical Science Journal
-->

UDC 519.65
P.S. Malachivskyy1, L.S. Melnychok2, Ya.V. Pizyur3


1 Ya.S. Pidstryhach Institute for Applied Problems of Mechanics and Mathematics, National Academy of Sciences of Ukraine, Lviv, Ukraine

Petro.Malachivskyy@gmail.com

2 Ya.S. Pidstryhach Institute for Applied Problems of Mechanics and Mathematics, National Academy of Sciences of Ukraine, Lviv, Ukraine

levkom@gmail.com

3 National University “Lvivska Politekhnika,” Lviv, Ukraine

yaropolk.v.piziur@lpnu.ua

CHEBYSHEV APPROXIMATION OF MULTIVARIABLE FUNCTIONS
BY A LOGARITHMIC EXPRESSION

Abstract. A method for constructing a Chebyshev approximation of the multivariable functions by a logarithmic expression with absolute error is proposed. It implies constructing an intermediate Chebyshev approximation by a polynomial with the relative error of the exponential value of the function being approximated. Construction of the Chebyshev approximation by a polynomial is based on calculating the limit mean-power approximation by the least squares method in accordance with the prevailing values of the variable weight function. The presented results of solving test examples confirm the rapid convergence of the method when calculating the parameters of the Chebyshev approximation by the logarithmic expression of the functions of one, two, and three variables.

Keywords: Chebyshev approximation of the multivariable functions, logarithmic expression, mean-power approximation, least squares method, variable weight function.


full text

REFERENCES

  1. Gutierrez R., Valls J. Low cost hardware implementation of logarithm approximation. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 2011. Vol. 19, N 12. P. 2326–2330. https://doi.org/10.1109/TVLSI.2010.2081387.

  2. Hajjar A.F., Awedh M.H. Efficient logarithmic function approximation. International Journal of Scientific Engineering and Technology. 2015. Vol. 4, Iss.7. P. 387–391.

  3. Luke Yu. Special mathematical functions and their approximations [Russian translation]. Moscow: Mir, 1980. 608 p.

  4. Popov B.A., Tesler G. Calculation of functions on a computer [in Russian]. Directory Kyiv: Nauk. dumka, 1984. 599 p.

  5. Popov B.A., Tesler G.S. Approximation of functions for technical applications [in Russian]. Kyiv: Nauk. dumka, 1980. 352 p.

  6. Malachivskyy P.S., Pizyur Ya.V., Danchak N.V., Orazov E.B. Chebyshev approximation by exponential-power expression. Cybernetics and Systems Analysis. 2013. Vol. 49, N 6. P. 877–881. https://doi.org/10.1007/s10559-013-9577-1.

  7. Malachivskyy P.S., Pizyur Ya.V., Danchak N.V., Orazov E.B. Chebyshev approximation by exponential expression with relative error. Cybernetics and Systems Analysis. 2015. Vol. 51, N 2. P. 286–290. https://doi.org/10.1007/s10559-015-9720-2 .

  8. Kalenchuk-Porkhanova A.O., Vakal L.P. Reproduction of functional dependencies based on nonlinear approximations of some types. Abstracts of Intern. Conf. “Problems of Decision Making under Uncertainties” (May 21–25, 2007, Chernivtsi, Ukraine). Chernivtsi, 2007. P. 135–137.

  9. Malachivskyy P.S., Pizyur Y.V., Malachivskyi R.P. Chebyshev approximation by a rational expression for functions of many variables. Cybernetics and Systems Analysis. 2020. Vol. 56, N 5. Р. 811–819. https://doi.org/10.1007/s10559-020-00302-0.

  10. Gerashchenko O.A., Gordov A.I., Eremina A.K. etc. Temperature measurements [in Russian]. Kyiv: Nauk. dumka, 1989. 704 p.

  11. Rudtsch S., von Rohden C. Calibration and self-validation of thermistors for high-precision temperature measurements. Measurement. 2015. Vol. 76. P. 1–6. https://doi.org/10.1016/j.measurement.2015.07.028.

  12. Huang Yi, Shahabadi M.B. Why logarithmic? A note on the dependence of radiative forcing on gas concentration. J. Geophys. Res. Atmos. 2014. Vol. 119, Iss. 24. P. 13683–13689. https://doi.org/10.1002/2014JD022466 .

  13. Shahabadi M.B, Huang Y. Logarithmic radiative effect of water vapor and spectral kernels. J. Geophys. Res. Atmos. 2014. Vol. 119, Iss. 10. P. 6000–6008. https://doi.org/10.1002/2014JD021623.

  14. Majewski J. Low humidity characteristics of polymer-based capacitive humidity sensors. Metrology and Measurement Systems. 2017. Vol. 24, N 4. P. 607–616.

  15. Bomba A., Baranovsky S., Blavatska O., Bachyshyna L. Infectious disease model generalization based on diffuse perturbations under conditions of body’s temperature reaction. Computers in Biology and Medicine. 2022. Vol. 146. 105561. https://doi.org/10.1016/j.compbiomed.2022.105561.

  16. Bomba A.Ya., Baranovsky S.V., Pasichnyk M.S., Pryshchepa O.V. Modeling small-scale spatial distributed influences on the development of infectious disease process. Mathematical Modeling and Computing. 2020. Vol. 7, N 2. P. 310–321. https://doi.org/10.23939/mmc2020.02.310 .

  17. Malachivskyy P.S., Matviychuk Y.N., Pizyur Y.V., Malachivskyi R.P. Uniform approximation of functions of two variables. Cybernetics and Systems Analysis. 2017. Vol. 53, N 3. P. 426–431. https://doi.org/10.1007/s10559-017-9943-5.

  18. Malachivskyy P.S., Pizyur Y.V., Malachivskyi R.P., Ukhanska O.M. Chebyshev approximation of functions of several variables. Cybernetics and Systems Analysis. 2020 Vol. 56, N 1. P. 76–86. https://doi.org/10.1007/s10559-020-00227-8.

  19. Malachivskyy P.S., Melnychok L.S., Pizyur Y.V. Chebyshev approximation of multivariable functions by the exponential expression. Cybernetics and Systems Analysis. 2021. Vol. 57, N 3. Р. 429–435. https://doi.org/10.1007/s10559-021-00367-5.

  20. Collatz L., Krabs V. Approximation Theory. Chebyshev approximations and their applications [Russian translation]. Moscow: Nauka, 1978. 272 p.

  21. Remez E. Ya. Fundamentals of numerical methods of the Chebyshev approximation [in Russian]. Kyiv: Nauk. dumka, 1969. 623 p.




© 2023 Kibernetika.org. All rights reserved.