Cybernetics And Systems Analysis logo
Editorial Board Announcements Abstracts Authors Archive
Cybernetics And Systems Analysis
International Theoretical Science Journal
-->

UDC 504.06
V.A. Pepelyaev1, A.N. Golodnikov2, N.A. Golodnikova3


1 V.M. Glushkov Institute of Cybernetics, National Academy of Sciences of Ukraine, Kyiv, Ukraine

pepelaev@yahoo.com

2 V.M. Glushkov Institute of Cybernetics, National Academy of Sciences of Ukraine, Kyiv, Ukraine

3 V.M. Glushkov Institute of Cybernetics, National Academy of Sciences of Ukraine, Kyiv, Ukraine

REVIEW OF CLIMATE CHANGES MODELING METHODS

Abstract. This authors overview the main approaches to the analysis of climate change. Climate models are based on physical laws and take into account scenarios of greenhouse gas emissions. They are used to analyze the processes in the climate system and predict possible climate future. The authors focus on the relationship between global climate models (GCMs), regional climate models (RCMs), and downscaling methods. An approach to the analysis and reproduction of climatic changes is also considered, which compared the results of multiple simulations with each other and with observational data.

Keywords: climate change, climate models, statistical downscaling, scenarios of greenhouse gas emissions.


full text

REFERENCES

  1. Golodnikov A.N., Ermol’ev Y.M., Ermol’eva T.Y., Knopov P.S., Pepelyaev V.A. Integrated modeling of food security management in Ukraine. I. Model for management of the economic availability of food. Cybernetics and Systems Analysis. 2013. Vol. 49, N 1. P. 26–35. https://doi.org/10.1007/s10559-013-9481-8 .

  2. Golodnikov A.N., Ermol’ev Y.M., Ermol’eva T.Y., Knopov P.S., Pepelyaev V.A. Integrated modeling of food security management in Ukraine. II. Models for structural optimization of agricultural production under risk. Cybernetics and Systems Analysis. 2013. Vol. 49, N 2. P. 217–228. https://doi.org/10.1007/s10559-013-9503-6 .

  3. Pepelyaev V.A., Golodnikov A.N., Golodnikova N.A. Reliability optimization in plant production. Cybernetics and Systems Analysis. 2022. Vol. 58, N 2. P. 191–196. https://doi.org/10.1007/s10559-022-00450-5.

  4. Pepelyaev V.A., Golodnikova N.A. Mathematical methods for crop losses risk evaluation and account for sown areas planning. Cybernetics and Systems Analysis. 2014. Vol. 50, N 1. P. 60–67. https://doi.org/10.1007/s10559-014-9592-x .

  5. Golodnikov A.N., Knopov P.S., Pepelyaev V.A. Estimation of reliability parameters under incomplete primary information. Theory and Decision. 2004. Vol. 57. P. 331–344. https://doi.org/10.1007/s11238-005-3217-9 .

  6. Zrazhevsky G.M., Golodnikov A.N., Uryasev S.P., Zrazhevsky A.G. Application of buffered probability of exceedance in reliability optimization problems. Cybernetics and Systems Analysis. 2020. Vol. 56, N 3. P. 476–484. https://doi.org/10.1007/s10559-020-00263-4.

  7. Butenko S., Golodnikov A., Uryasev S. Optimal security liquidation algorithms. Computational Optimization and Applications. 2005. Vol. 32, Iss. 1-2. P. 9–27. https://doi.org/ 10.1007/s10589-005-2052-9 .

  8. Golodnikov A.N., Ermoliev Y.M., Knopov P.S. Estimating reliability parameters under insufficient information. Cybernetics and Systems Analysis. 2010. Vol. 46, N 3. P. 443–459. https://doi.org/10.1007/s10559-010-9219-9 .

  9. Zongci Zh., Yong L., Jianbin H. Are extreme weather and climate events affected by global warming? Climate Change Research. 2014. Vol. 10, Iss. 5. P. 388–390. https://doi.org/10.3969/j.issn.1673-1719.2014.05.012 .

  10. Giorgi F., Jones C., Asrar G.R. Addressing climate information needs at the regional level: the CORDEX framework. World Meteorological Organization Bulletin. 2009. Vol. 58, N 3. 175. URL: https://public.wmo.int/en/bulletin/addressing-climate-information-needs-regional-level- cordex-framework .

  11. Roberts M.J. et al. The benefits of global high resolution for climate simulation: process understanding and the enabling of stakeholder decisions at the regional scale. Bulletin of the American Meteorological Society. 2018. Vol. 99, Iss. 11. P. 2341–2359. https://doi.org/10.1175/BAMS-D-15-00320.1.

  12. Schr C et al. Kilometer-scale climate models: prospects and challenges. Bulletin of the American Meteorological Society. 2020. Vol. 101, Iss. 5. P. E567–E587. https://doi.org/ 10.1175/BAMS-D-18-0167.1.

  13. EURO-CORDEX Data. URL: https://www.euro-cordex.net/060378/index.php.en .

  14. von Storch H., Zorita E., Cubasch U. Downscaling of global climate change estimates to regional scales: An application to Iberian rainfall in wintertime. Journal of Climate. 1993. Vol. 6, Iss. 6. P. 1161–1171. https://doi.org/10.1175/1520-0442(1993)006:DOGCCE2.0.CO;2.

  15. Liu Ch., Liu W., Fu G., Ouyang R. A discussion of some aspects of statistical downscaling in climate impacts assessment. Advances in Water Science. 2012. Vol. 23, Iss. 3. P. 427–437.

  16. Giorgi F., Jones C., Asrar G.R. Addressing climate information needs at the regional level: the CORDEX framework. World Meteorological Organization Bulletin. 2009. Vol. 58, N 3. P. 175–183. URL: https://public.wmo.int/en/bulletin/addressing-climate-information-needs-regional-level-cordex-framework .

  17. Stendel M., Romanovsky V.E., Christensen J.H., Sazonova T. Using dynamical downscaling to close the gap between global change scenarios and local permafrost dynamics. Global and Planetary Change. 2007. Vol. 56, Iss. 12. P. 203–214. https://doi.org/10.1016/j.gloplacha.2006.07.014.

  18. Michelangeli P.-A., Vrac M., Loukos H. Probabilistic downscaling approaches: Aplication to wind cumulative distribution functions. Geophys. Res. Lett. 2009. Vol. 36, Iss. 11. P. 16. https://doi.org/10.1029/2009GL038401 .

  19. Wilby R.L., Fowler H.J. Regional climate downscaling. In: Modelling the Impact of Climate Change on Water Resources. Fung F., Lopez A., New M. (Eds.). Blackwell Publishing Ltd., 2011. P. 34–85.

  20. Maraun D., Shepherd T., Widmann M. et al. Towards process-informed bias correction of climate change simulations. Nature Clim Change. 2017. Vol. 7. P. 764773. https://doi.org/10.1038/nclimate3418.

  21. Maraun D. et al. Precipitation downscaling under climate change: Recent developments to bridge the gap between dynamical models and the end user. Reviews of Geophysics. 2010. Vol. 48, Iss. 3. P. 134. https://doi.org/10.1029/2009RG000314.

  22. Udovenko O.I., Kivva S.L., Kovalets I.V. Assessment of climatic characteristics of extreme rain floods using statistical downscaling methods. Hydrology, hydrochemistry, and hydroecology. 2014. Vol. 4, N 35. P. 39–48.

  23. Chen L., Li W., Zhang P. et al. Application of a new downscaling model to monthly precipitation forecast. J Appl Meteor Sci. 2003. Vol. 14, Iss. 6. P. 648–655. URL: http://112.126.69.253/ en/article/id/20030682 .

  24. Masson-Delmotte V., Zhai P., Pirani A., Connors S.L. et.al. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge; New York: Cambridge University Press, 2021. 2391 p. https://doi.org/10.1017/9781009157896.

  25. Ahmed M. et al. Novel multimodel ensemble approach to evaluate the sole effect of elevated CO2 on winter wheat productivity. Scientific Reports. 2019. Vol. 9. Article number: 7813. https://doi.org/10.1038/s41598-019-44251-x.

  26. Flato G., Marotzke J., Abiodun B., Braconott P. et.al. Evaluation of climate models. In: Climate Change 2013: The Physical Science Basis: Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Stocker T.F., Qin D., Plattner G.-K., Tignor M., Allen S.K., Boschung J., Nauels A., Xia Y., Bex V., Midgley P.M. (Eds.). Cambridge: Cambridge University Press, 2013. P. 741886. https://doi.org/10.1017/ CBO9781107415324.020.

  27. Murphy J., Sexton D., Barnett D., Jones G., Webb M., Collins M., Stainforth D. Quantification of modelling uncertainties in a large ensemble of climate change simulations. Nature. 2004. Vol. 430. P. 768772. https://doi.org/10.1038/nature02771.

  28. Knutti R., Furrer R., Tebaldi C., Cermak J., Meehl G. Challenges in combining projections from multiple climate models. Journal of Climate. 2010. Vol. 23, Iss. 10. P. 2739–2758. https://doi.org/10.1175/2009JCLI3361.1.

  29. Lee L.A., Carslaw K.S., Pringle K.J., Mann G.W., Spracklen D.V. Emulation of a complex global aerosol model to quantify sensitivity to uncertain parameters. Atmospheric Chemistry and Physics. 2011. Vol. 11, Iss. 23. P. 12253–12273. https://doi.org/10.5194/acp-11-12253-2011.

  30. Shiogama H., Watanabe M., Ogura T., Yokohata T., Kimoto M. Multi-parameter multi-physics ensemble (MPMPE): a new approach exploring the uncertainties of climate sensitivity. Atmospheric Science Letters. 2014. Vol.15, Iss. 2. P. 97102. https://doi.org/10.1002/asl2.472.

  31. Parker W.S. Ensemble modeling, uncertainty and robust predictions. WIREs Climate Change. 2013. Vol. 4, Iss. 3. P. 213–223. https://doi.org/10.1002/wcc.220.

  32. van der Linden P., Mitchell J.F.B. (Eds.). ENSEMBLES: Climate change and its Impacts: Summary of research and results from the ENSEMBLES project. Exeter: Met Office Hadley Centre, 2009. 160 p. URL: https://www.eea.europa.eu .

  33. Mearns L.O., Gutowski W., Jones R., Leung R., McGinnis S., Nunes A., Qian Y. A regional climate change assessment program for North America. Eos, Transactions, American Geophysical Union. 2009. Vol. 90, Iss. 36. P. 311–311. https://doi.org/10.1029/2009EO360002.

  34. Jacob D. et al. Regional climate downscaling over Europe: perspectives from the EURO- CORDEX community. Regional Environmental Change. 2020. Vol. 20. 51. https://doi.org/ 10.1007/s10113-020-01606-9 .

  35. About CORDEX. URL: https://www.icrc-cordex2016.org .

  36. EURO-CORDEX Simulations. URL: https://www.euro-cordex.net .

  37. Coordinated Downscaling Experiment - European Domain. URL: https://euro-cordex.net .

  38. Jacob D. et al. Assessing the transferability of the regional climate model REMO to different COordinated Regional Climate Downscaling EXperiment (CORDEX) regions. Atmosphere. 2012. Vol. 3, N 1. P. 181–199. https://doi.org/10.3390/atmos3010181.

  39. Kotlarski S. et al. Regional climate modeling on European scales: a joint standard evaluation of the EURO-CORDEX RCM ensemble. Geoscientific Model Development. 2014. Vol. 7, Iss. 4. P. 1297–1333. https://doi.org/10.3929/ethz-b-000086790.

  40. Colin J., Deque M., Radu R., Somot S. Sensitivity study of heavy precipitation in limited area model climate simulations: influence of the size of the domain and the use of the spectral nudging technique. Tellus A: Dynamic Meteorology and Oceanography. 2010. Vol. 62, Iss. 5. P. 591–604. https://doi.org/10.1111/j.1600-0870.2010.00467.x .

  41. Will A. et al. The COSMO-CLM 4.8 regional climate model coupled to regional ocean, land surface and global earth system models using OASIS3-MCT: description and performance. Geosci. Model Dev. 2017. Vol. 10, Iss. 4. P. 1549–1586. https://doi.org/10.5194/gmd-10-1549-2017.

  42. Christensen J.H., Carter T.R., Rummukainen M., Amanatidis G. Evaluating the performance and utility of regional climate models: the PRUDENCE project. Climatic Change. 2007. Vol. 81, Suppl. iss. 1. P.16. https://doi.org/10.1007/s10584-006-9211-6.

  43. Samuelsson P. et al. The Rossby centre regional climate model RCA3: model description and performance. Tellus A: Dynamic Meteorology and Oceanography. 2011. Vol. 63, Iss. 1. P. 423. https://doi.org/10.1111/j.1600-0870.2010.00478.x .

  44. Giorgi F. et al. RegCM4: model description and preliminary tests over multiple CORDEX domains. Clim. Res. 2012. Vol. 52, Iss.1. P. 729. https://doi.org/10.3354/cr01018.

  45. Jacob D. et al. EURO-CORDEX: new high-resolution climate change projections for European impact research. Reg. Environ. Change. 2014. Vol. 14, Iss. 2. P. 563–578. https://doi.org/ 10.1007/s10113-013-0499-2.

  46. Skamarock W.C., Klemp J.B. A time-split nonhydrostatic atmospheric model for weather research and forecasting applications. Journal of Computational Physics. 2008. Vol. 227, Iss. 7. P. 3465–3485. https://doi.org/10.1016/j.jcp.2007.01.037.

  47. Giot O. et al. Validation of the ALARO-0 model within the EURO-CORDEX framework. Geoscientific Model Development. 2016. Vol. 9, Iss. 3. P. 1143–1152. https://doi.org/10.5194 /gmd-9-1143-2016.

  48. Termonia P. et al. The CORDEX.be initiative as a foundation for climate services in Belgium. Climate Services. 2018. Vol. 11. P. 4961. https://doi.org/10.1016/j.cliser.2018.05.001 .

  49. Benestad R., Parding K., Dobler A., Mezghani A. A strategy to effectively make use of large volumes of climate data for climate change adaptation. Climate Services. 2017. Vol. 6. P. 48–54. https://doi.org/10.1016/j.cliser.2017.06.013.

  50. Maraun D. et al. VALUE: a framework to validate downscaling approaches for climate change studies. Earth’s Future. 2015. Vol. 3, Iss. 1. P. 114. https://doi.org/10.1002/2014ef000259.

  51. Maraun D., Widmann M., GutiБrrez J.M. Statistical downscaling skill under present climate conditions: a synthesis of the VALUE perfect predictor experiment. International Journal of Climatology. 2018. Vol. 39, Iss. 9. P. 36923703. https://doi.org/10.1002/joc.5877.

  52. Hertig E. et al. Comparison of statistical downscaling methods with respect to extreme events over Europe: validation results from the perfect predictor experiment of the COST action VALUE. International Journal of Climatology. 2018. Vol. 39, Iss. 9. P. 38463867. https://doi.org/10.1002/joc.5469.

  53. Soares P.M.M. et al. Process-based evaluation of the VALUE perfect predictor experiment of statistical downscaling methods. International Journal of Climatology. 2018. Vol. 39, Iss. 9. P. 3868–3893. https://doi.org/10.1002/joc.5911 .

  54. Widmann M. et al. Validation of spatial variability in downscaling results from the VALUE perfect predictor experiment. International Journal of Climatology. 2019. Vol. 39, Iss. 9. P. 3819–3845. https://doi.org/10.1002/joc.6024.

  55. Nakicenovic N., Swart R. Special Report on Emissions Scenarios (SRES) — A Special Report of Working Group III of the Intergovernmental Panel on Climate Change. Cambridge; New York: Cambridge University Press, 2000. 559 p.

  56. Solomon S., Qin D., Manning M., Chen Z., Marquis M., Averyt K.B., Tignor M., Miller H.L. (Eds.). IPCC: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge; New York: Cambridge University Press, 2007. 333 p.

  57. Stocker T.F., Qin D., Plattner G.-K., Tignor M., Allen S.K., Boschung J., Nauels A., Xia Y., Bex V., Midgley P.M. (Eds.). The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge; New York: Cambridge University Press, 2013. 1535 p.

  58. Masson-Delmotte V., Zhai P., Pirani A., Connors S.L. et al. (Eds.). IPCC, 2021: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge; New York: Cambridge University Press, 2021. 2391 p. https://doi.org/10.1017/9781009157896 .

  59. Krakowska S.V., Hnatyuk N.V., Shpital T.M., Palamarchuk L.V. Projections of changes in surface air temperature according to the ensemble of regional climate models in the regions of Ukraine in the 21st century. Scientific works of UkrNDGMI. 2016. Iss. 268. P. 3344. URL: http://nbuv.gov.ua/UJRN/Npundgi_2016_268_6 .

  60. Krakowska S.V. Numerical projections of climate changes in the Luhansk region until 2050. Scientific works of UkrNDMI. 2012. Iss. 261. P. 3755. URL: http://dspace.nbuv.gov.ua/handle/123456789/58606.

  61. Krakowska S.V., Hnatyuk N.V., Shpital T.M. Possible scenarios of climatic conditions in the Ternopil region during the 21st century. Nauk. zap. Ternop. nats. ped. un-tu im. V. Hnatyuka. Ser. geography. 2014. N 1. P. 5567.

  62. Artamonov B.B., Shevchenko S.M., Dyachuk A.O. Forecast of the impact of climate change in the Khmelnytskyi region on the environment and population. Scientific bulletin of NLTU of Ukraine. 2019. Vol. 29, N 2. P. 8890. https://doi.org/10.15421/40290217.

  63. Safranov T., Katerusha G., Katerusha O., Yarai K. Peculiarities of the dynamics of heat waves in some cities of Ukraine. Bulletin of Kharkiv V.N. Karazin National University, series "Geology. Geography. Ecology". 2021. Iss. 55. P. 232–244. https://doi.org/10.26565/2410-7360-2021-55-17 .




© 2023 Kibernetika.org. All rights reserved.