UDC 519.65
1 Ya.S. Pidstryhach Institute for Applied Problems of Mechanics and Mathematics, National Academy of Sciences of Ukraine, Lviv, Ukraine
Petro.Malachivskyy@gmail.com
|
|
CHEBYSHEV APPROXIMATION OF MULTIVARIABLE FUNCTIONS WITH
REPRODUCTION OF THE VALUES OF THE FUNCTION AND ITS PARTIAL DERIVATIVES
Abstract. A method for constructing the Chebyshev approximation of a discrete multivariable function with reproduction of function’s values and partial derivatives at given points is proposed. The idea of the method is based on the construction of the boundary mean-power approximation with the appropriate interpolation conditions. An iterative scheme based on the least squares method with a variable weight function is used to construct the mean-power approximation. The results of the approximation of the function of one variable confirm the fulfillment of the characteristic property of the Chebyshev approximation with the reproduction of the values of the function and the values of its derivatives at the given points. The test examples confirm the fast convergence of the proposed method.
Keywords: Chebyshev approximation, Chebyshev approximation with the condition, multivariable functions, mean-power approximation, least squares method, variable weight function, partial derivatives.
full text
REFERENCES
- Laurent P.–J. Approximation et Optimisation. Paris: Hermann; 1972. 531 p.
- Collatz L., Krabs W. Approximationstheorie. Tschebyscheffsche approximation mit anwendungen. Teubner Studienbucher Mathematik (TSBMA). Wiesbaden: Vieweg+Teubner Verlag, 1973. 209 p. doi.org/10.1007/978-3-322-94885-4 .
- Nurnberger G., Sommer M. Alternation for best spline approximation. Numer. Math. 1983. Vol. 41, N 2. P. 207–221. https://doi.org/10.1007/BF01390213 .
- Popov B.A. Uniform approximation by splines [in Russian]. Kyiv: Nauk. Dumka, 1989. 272 p.
- Malachivskyy P.S., Skopetskyi V.V. Continuous and smooth minimax spline approximation [in Ukrainian]. Kyiv: Nauk. Dumka, 2013. 270 p.
- Fedorchuk V., Ivaniuk V., Ponedilok V. The method of decoding signals of temperature sensors of communication network equipment based on the use of nonlinear Volterra integral models. Proc. 2022 IEEE 4th International Conference on Advanced Trends in Information Theory (ATIT 2022) (15-17 December 2022, online venue, Ukraine). Online venue, 2022. P. 19–22.
- Verlan A., Fedorchuk V., Ivaniuk V., Sterten J. Using non-linear integral models in automatic control and measurement systems for sensors’ input signals’ recovery. Advances in Intelligent Systems and Computing. 2021. AISC. Vol. 1323. P. 18–25. https://doi.org/10.1007/_3.
- Bomba A., Baranovsky S., Blavatska O., Bachyshyna L. Infectious disease model generalization based on diffuse perturbations under conditions of body’s temperature reaction. Computers in Biology and Medicine . 2022. Vol. 146. 105561. doi.org/10.1016/ j.compbiomed.2022.105561.
- Bomba A.Ya., Baranovsky S.V., Pasichnyk M.S., Pryshchepa O.V. Modeling small-scale spatial distributed influences on the development of infectious disease process. Mathematical Modeling and Computing. 2020. Vol. 7, N 2. P. 310–321. doi.org/ 10.23939/mmc2020.02.310.
- Korneichuk N.P., Ligun A.A., Doronin V.G. Approximation with constraints [in Russian]. Kyiv: Nauk. Dumka, 1982. 250 p.
- Collatz L., Albrecht J. Aufgaben aus der Angewandten Mathematik I. Gleichungen in einer oder mehreren Variablen, Approximationen. Berlin: Akademie-Verlag, 1972.
- Dunham C., Zhu C. Strong uniqueness of nonlinear Chebyshev approximation (with interpolation). Proc. 20th Manitoba Conference on Numerical Mathematics and Computing (September 1990, Winnipeg, Manitoba, Canada). Winnipeg, 1990. Congressus Numerantium. 1991. Vol. 80. P. 161–169.
- Dunham C.B. Discrete Chebyshev approximation with interpolation. International Journal of Computer Mathematics. 1982. Vol. 11, N 3–4. P. 243–245.
- Skopetskii V.V., Malachivskii P.S. Chebyshev approximation of functions by the sum of a polynomial and an expression with a nonlinear parameter and endpoint interpolation. Cybernetics and Systems Analysis. 2009. Vol. 45, N 1. P. 58–68. doi.org/10.1007/ s10559-009-9078-4.
- Melnychok L.S., Popov B.A. The best approximation of tabular functions with a condition. Algorithms and programs for calculating functions on ECM. 1977. Iss. 4. P. 189–200.
- Malachivskyy P.S., Melnychok L.S., Pizyur Y.V. Chebyshev approximation of the functions of many variables with the condition. Proc. IEEE 15th International Conference on Computer Sciences and Information Technologies (CSIT 2020) (23-26 September 2020, Zbarazh, Ukraine). Zbarazh, 2020. Vol. 1. P. 54–57. doi.org/10.1109/CSIT49958.2020.9322026.
- Malachivskyy P., Melnychok L., Pizyur Ya. Chebyshev approximation of multivariable functions with the interpolation. Mathematical Modeling and Computing. 2022. Vol. 9, N. 3, P. 757–766. doi.org/10.23939/mmc2022.03.757.
- Malachivskyy P.S., Melnychok L.S., Pizyur Y.V. Chebyshev approximation of multivariable functions by a constrained rational expression. Cybernetics and Systems Analysis. 2023. Vol. 59, N. 1. Р. 146–159. doi.org/10.1007/s10559-023-00552-8.
- Remez E.Ya. Basics of numerous methods of the Chebyshev approximation [in Russian]. Kyiv: Nauk. Dumka, 1969. 623 p.
- Malachivskyy P.S., Pizyur Ya.V., Malachivskyi R.P., Ukhanska O.M. Chebyshev approximation of functions of several variables. Cybernetics and Systems Analysis. 2020. Vol. 56, N 1. P. 118–125. doi.org/10.1007/s10559-020-00227-8.