UDC 004.855.5
1 Taras Shevchenko National University of Kyiv; V.M. Glushkov Institute of Cybernetics, National Academy of Sciences of Ukraine, Kyiv, Ukraine
yuri.krak@gmail.com
|
|
THE TECHNIQUE OF INVERSE MULTIDIMENSIONAL SCALING
FOR THE SYNTHESISOF MACHINE LEARNING MODELS
Abstract. The created technique offers a technique of projecting a mental model obtained based on visual analytics into the space of machine use. The effectiveness of the use of visual analytics consists in mapping the multidimensional space of features into the visual space and providing a mechanism for formalizing the mental model. This allows a person to be integrated into the process of formation and training a machine learning model. Examples that demonstrate the effectiveness of using the proposed methodology for solving practical problems are given.
Keywords: visual analytics, machine learning, model formation, formal model, mental model, inverse multidimensional scaling.
full text
REFERENCES
- Li X., Xiong H., Li X., Wu X., Zhang X., Liu J., Bian J., Dou D. Interpretable deep learning: Interpretation, interpretability, trustworthiness, and beyond. Knowledge and Information Systems. 2022. Vol. 64, N 12. P. 3197–3234. https://doi.org/10.1007/s10115-022-01756-8 .
- Benzougagh B., Meshram S.G., Fellah B.E. et al. Mapping of land degradation using spectral angle mapper approach (SAM): The case of Inaouene watershed (Northeast Morocco). Modeling Earth Systems and Environment. 2023. https://doi.org/10.1007/s40808-023-01711-8 .
- Hirwa H., Zhang Q., Li F., Qiao Y., Measho S., Muhirwa F. et al. Water accounting and productivity analysis to improve water savings of Nile river basin, East Africa: From accountability to sustainability. Agronomy. 2022. Vol. 12, No 4. 818. https://doi.org/10.3390/agronomy12040818 .
- Odusami M., Maskelinas R., R. Pixel-level fusion approach with vision transformer for early detection of Alzheimer’s disease. Electronics. 2023. Vol. 12, N 5. 1218. https://doi.org/10.3390/electronics12051218 .
- Kirichenko N.F., Krivonos Y.G., Lepekha N.P. Synthesis of systems of neurofunctional transformations in classification problems. Cybernetics and Systems Analysis. 2007. Vol. 43, N 3. P. 353–361. https://doi.org/10.1007/s10559-007-0056-4.
- Wu X., Xiao L., Sun Y., Zhang J., Ma T., He L. A survey of human-in-the-loop for machine learning. Future Generation Computer Systems. 2022. Vol. 135, P. 364–381. https://doi.org/ 10.1016/j.future.2022.05.014 .
- Buerle A., Cabrera ѕ.A., Hohman F., Maher M., Koski D., Suau X., Barik T., Moritz D. Symphony: Composing interactive interfaces for machine learning. CHI '22: Proceedings of the 2022 CHI Conference on Human Factors in Computing Systems. 2022. Article 210. P. 1–14. "https://doi.org/10.1145/ 3491102.3502102 .
- Cabrera ѕ.A., Tulio Ribeiro M., Lee B., Deline R., Perer A., Drucker S.M. What did my AI learn? How data scientists make sense of model behavior. ACM Transactions on Computer-Human Interaction. 2023. Vol. 30, N 1. P. 1–27. https://doi.org/10.1145/3542921 .
- Alicioglu G., Sun B. A survey of visual analytics for Explainable Artificial Intelligence methods. Computers & Graphics. 2022. Vol. 102. P. 502–520. https://doi.org/10.1016/j.cag.2021.09.002.
- Esterhuizen J.A., Goldsmith B.R., Linic S. Interpretable machine learning for knowledge generation in heterogeneous catalysis. Nature Catalysis. 2022. Vol. 5, N 3. P. 175–184. https://doi.org/10.1038/s41929-022-00744-z .
- Friedrich F., Stammer W., Schramowski P., Kersting K. A typology to explore and guide explanatory interactive machine learning. arXiv:2203.03668 [cs.LG] 4 Mar 2022. https://doi.org/ 10.48550/arXiv.2203.03668 .
- Ma Y., Xie T., Li J., Maciejewski R. Explaining vulnerabilities to adversarial machine learning through visual analytics. IEEE Transactions on Visualization and Computer Graphics. 2019. Vol. 26, N 1. P. 1075–1085. "https://doi.org/10.1109/TVCG.2019.2934631.
- Yuan J., Chen C., Yang W., Liu M., Xia J., Liu S. A survey of visual analytics techniques for machine learning. Computational Visual Media. 2021. Vol. 7. P. 3–36. https://doi.org/10.1007/ s41095-020-0191-7 .
- Wolf L., Galanti T., Hazan T. A formal approach to explainability. Proc. of the 2019 AAAI/ACM Conference on AI, Ethics, and Society, New York, NY, USA: Association for Computing Machinery, 2019. P. 255–261. https://doi.org/10.1145/3306618.3314260.
- Thompson J. Mental models and interpretability in AI fairness tools and code environments. HCI International 2021-Late Breaking Papers: Multimodality, eXtended Reality, and Artificial Intelligence: Proc. of the 23rd HCI International Conference, HCII 2021 (Virtual Event, July 24–29, 2021). Springer, 2021. P. 574–585. https://doi.org/10.1007/978-3-030-90963-5_43.
- Sacha D., Kraus M., Keim D.A., Chen M. Vis4ml: An ontology for visual analytics assisted machine learning. IEEE Transactions on Visualization and Computer Graphics. 2018. Vol. 25, N 1. P. 385–395. https://doi.org/10.1109/TVCG.2018.2864838.
- Kryvonos Iu.G., Krak Iu.V., Barmak O.V., Kulias A.I. Methods to create systems for the analysis and synthesis of communicative information. Cybernetics and Systems Analysis. 2017. Vol. 53, N 6. P. 847–856. https://doi.org/10.1007/s10559-017-9986-7 .
- Krak I., Barmak O., Manziuk E., Kulias A. Data classification based on the features reduction and piecewise linear separation. Intelligent Computing and Optimization. 2020. Vol. 1072. P. 282–289. https://doi.org/10.1007/978-3-030-33585-4_28.
- Barmak O., Manziuk E., Kalyta O., Krak Iu., Kuznetsov V., Kulias A. Recognition of emotional expressions using the grouping crowdings of characteristic mimic states. CEUR Workshop Proceedings. 2020. Vol. 2866. P. 173–181.
- Barmak O., Krak Y., Manziuk E. Characteristics for choice of models in the ansables classification. CEUR Workshop Proceedings. 2018. Vol. 2139. P. 171–179. https://doi.org/ 10.15407/pp2018.02.171.