Cybernetics And Systems Analysis logo
Editorial Board Announcements Abstracts Authors Archive
Cybernetics And Systems Analysis
International Theoretical Science Journal
-->

UDC 519.85
Yu. Stoyan1, T. Romanova2, O. Kravchenko3, G. Yaskov4,
A. Chuhai5, D. Veligotskyi6



1 A. Pidgorny Institute of Mechanical Engineering Problems of the National Academy of Sciences of Ukraine, Kharkiv, Ukraine

yustoyan19@gmail.com

2 A. Pidgorny Institute of Mechanical Engineering Problems of the National Academy of Sciences of Ukraine and Kharkiv National University of Radio Electronics, Kharkiv, Ukraine

tarom27@yahoo.com

3 A. Pidgorny Institute of Mechanical Engineering Problems of the National Academy of Sciences of Ukraine, Kharkiv, Ukraine

krav@ipmach.kharkov.ua

4 A. Pidgorny Institute of Mechanical Engineering Problems of the National Academy of Sciences of Ukraine, Kharkiv, Ukraine

yaskov@ukr.net

5 A. Pidgorny Institute of Mechanical Engineering Problems of the National Academy of Sciences of Ukraine and Simon Kuznets Kharkiv National University of Economics, Kharkiv, Ukraine

chugay.andrey80@gmail.com

6 A. Pidgorny Institute of Mechanical Engineering Problems of the National Academy of Sciences of Ukraine, Kharkiv, Ukraine

krav@ipmach.kharkov.ua

DIGITAL MODEL OF NATURAL CORES USING GEOMETRIC DESIGN

Abstract. The article aims to create a digital model of rock-collector cores using the problem of packing spherical particles in a cylindrical container. A new approach to the mathematical modeling of the rock-collector structure is proposed. The computation of its porosity is provided. A mathematical model of the problem of placing the maximum number of spheres with different diameters in a cylindrical container is presented. A solution algorithm is developed based on the optimization by groups of variables and a lattice decomposition strategy. The results of experimental petrophysical studies of real well cores are used as input data. The modeling results provide a good approximation of the absolute porosity of the natural prototype. The application of this approach will help improve hydrocarbon extraction technologies and increase their efficiency.

Keywords: geometric design, digital model, kern, packing, spheres, nonlinear optimization.


full text

REFERENCES

  1. Kravchenko O., Velighotskiy D., Avramenko A., Habibullin R. An improved technology of a complex influence on productive layers of oil and gas wells. Eastern-European Journal of Enterprise Technologies. 2014. Vol. 6, N 5. P. 4–9. https://doi.org//10.15587/1729-4061.2014.29316.

  2. Blunt M.J. Multiphase flow in permeable media: A pore-scale perspective. Cambridge University Press, 2017. 500 p. https://doi.org/10.1017/9781316145098.

  3. McPhee C., Reed J., Zubazarreta I. Best practice in coring and core analysis. In: Core Analysis: A Best Practice Guide. McPhee C., Reed J., Zubizarreta I. (Eds.). Developments in Petroleum Science. Ch. 1. Elsevier, 2015. Vol. 64 P. 1–15. https://doi.org/10.1016/B978 -0-444-63533-4.00001-9 .

  4. Sedaghat M.H., Gerke K., Azizmohammadi S., Matthai S.K. Simulation-based determination of relative permeability in laminated rocks. Energy Procedia. 2016. Vol. 97. P. 433–439. https://doi.org/10.1016/j.egypro.2016.10.041.

  5. Eichheimer P., Thielmann M., Popov A., Golabek G.J., Fujita W., Kottwitz M.O., Kaus B.J.P. Pore-scale permeability prediction for Newtonian and non-Newtonian fluids. Solid Earth. 2019. Vol. 10, Iss. 5. P. 1717–1731. https://doi.org 10.5194/se-10-1717-2019.

  6. Kallrath J. Cutting & packing beyond and within mathematical programming. In: Business Optimisation Using Mathematical Programming. International Series in Operations Research & Management Science. Cham: Springer, 2021. Vol. 307. P. 495–526. https://doi.org/10.1007/ 978-3-030-73237-0_10.

  7. Kovalenko A.A., Romanova T.E., Stetsyuk P.I. Balance layout problem for 3D-objects: Mathematical model and solution methods. Cybernetics and Systems Analysis. 2015. Vol. 51, N 4. P. 556–565. https://doi.org/10.1007/s10559-015-9746-5.

  8. Romanova T.E., Stetsyuk P.I., Chugay A.M., Shekhovtsov S.B. Parallel computing technologies for solving optimization problems of geometric design. Cybernetics and Systems Analysis. 2019. Vol. 55, N 6. P. 894–904. https://doi.org/10.1007/s10559-019-00199-4.

  9. Hifi M., M’Hallah R. A literature review on circle and sphere packing problems: Models and methodologies. Adv. Oper. Res. 2009. Vol. 2009. Article 150624.

  10. Sutou A., Day Y. Global optimization approach to unequal sphere packing problems in 3D. J. Optim. Theory Appl. 2002. Vol. 114, Iss. 3. P. 671–694.

  11. Mueller G.E. Numerically packing spheres in cylinders. Powder Technol. 2005. Vol. 159, Iss. 2. P. 105–110.

  12. Yamada S., Kanno J., Miyauchi M. Multi-sized sphere packing in containers: optimization formula for obtaining the highest density with two different sized spheres. IPSJ Online Trans. 2011. Vol. 4. P. 126–133.

  13. Burtseva L., Pestryakov A., Romero R., Valdez B., Petranovskii V. Some aspects of computer approaches to simulation of bimodal sphere packing in material engineering. Adv. Mater. Res. 2014. Vol. 1040. P. 585–591.

  14. Halkarni S.S., Sridharan A., Prabhu S.V. Experimental investigation on effect of random packing with uniform sized spheres inside concentric tube heat exchangers on heat transfer coefficient and using water as working medium. Int. J. Therm. Sci. 2018. Vol. 133. P. 341–356.

  15. Amore P. Circle packing in regular polygons. Physics of Fluids. 2023. Vol. 35, Iss. 2. Article 027130.

  16. Romanova T.E., Stetsyuk P.I., Fischer A., Yaskov G.M. Proportional packing of circles in a circular container. Cybernetics and Systems Analysis. 2023. Vol. 59, N 1. P. 82–89. https://doi.org/10.1007/s10559-023-00544-8 .

  17. Fischer A., Litvinchev I., Romanova T., Stetsyuk P., Yaskov G. Quasi-packing different spheres with ratio conditions in a spherical container. Mathematics. 2023. Vol. 11, N 9. 2033. https://doi.org/10.3390/math11092033 .

  18. Bertsekas D.P. Nonlinear programming, 2nd ed. Belmont, MA: Athena Scientific, 1999. 791 p.

  19. Yaskov G., Chugay A. Packing equal spheres by means of the block coordinate descent method. Proc. The Third International Workshop CMIS-2020 (April 27 – May 1 2020, Zaporizhzhia, Ukraine). Zaporizhzhia, 2020. Vol. 2608. P. 156–168. URL: https://ceur-ws.org/ Vol-2608/paper13.pdf .

  20. Wachter A., Biegler L.T. On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming. 2006. Vol. 106, Iss. 1. P. 25–57. https://doi.org/10.1007/s10107-004-0559-y .

  21. Romanova T., Litvinchev I., Pankratov A. Packing ellipsoids in an optimized cylinder. European Journal of Operational Research. 2020. Vol. 285, Iss. 2. P. 429–443. https://doi.org/10.1016/j.ejor.2020.01.051.

  22. Stoyan Y.G., Romanova T.E., Pankratov O.V., Stetsyuk P.I., Maximov S.V. Sparse balanced layout of ellipsoids. Cybernetics and Systems Analysis. 2021. Vol. 57, N. 6. P. 864–873. https://doi.org/10.1007/s10559-021-00412-3.

  23. Kallrath J. Packing ellipsoids into volume-minimizing rectangular boxes. Journal of Global Optimization. 2017. Vol. 67, Iss. 1–2. P. 151–185. https://doi.org/10.1007/s10898-015-0348-6.

  24. Kampas F.J., PintБr J.D., Castillo I. Packing ovals in optimized regular polygons. Journal of Global Optimization. 2020. Vol. 77, Iss. 1. P. 175–196. https://doi.org/10.1007/s10898-019-00824-8.

  25. Sergienko I.V., Stetsyuk P.I. On N.Z. Shor’s three scientific ideas. Cybernetics and Systems Analysis. 2012. Vol. 48, N 1. P. 2–16. https://doi.org/10.1007/s10559-012-9387-x .

  26. Stetsyuk P.I. Theory and software implementations of Shor’s r-algorithms. Cybernetics and Systems Analysis. 2017. Vol. 53, N 5. P. 692–703. https://doi.org/10.1007/s10559-017-9971-1.

  27. Litvinchev I., Mata M., Rangel S., Saucedo J. Lagrangian heuristic for a class of the generalized assignment problems. Computers & Mathematics with Applications. 2010. Vol. 60, Iss. 4. P. 1115–1123. https://doi.org/10.1016/j.camwa.2010.03.070.

  28. Litvinchev I.S. Decomposition-aggregation method for convex programming problems. Optimization. 1991. Vol. 22, Iss. 1. P. 47–56. https://doi.org/10.1080/02331939108843642.

  29. Litvinchev I.S., Rangel S. Localization of the optimal solution and a posteriori bounds for aggregation. Computers & Operations Research. 1999. Vol. 26, Iss. 10–11. P. 967–988. http://dx.doi.org/10.1016/S0305-0548(99)00027-1 .

  30. Duriagina Z., Lemishka I., Litvinchev I., Marmolejo J.A., Pankratov A., Romanova T., Yaskov G. Optimized filling of a given cuboid with spherical powders for additive manufacturing. Journal of the Operations Research Society of China. 2021. Vol. 9, Iss. 4. P. 853–868. https://doi.org/10.1007/s40305-020-00314-9.

  31. Michaelis A., Scheithauer U., Moritz T., Weingarten S., Abel J., Schwarzer E., Kunz W. Advanced manufacturing for advanced ceramics. Procedia CIRP. 2020. Vol. 95. P. 18–22.

  32. Abel J., Scheithauer U., Janics T., Hampel S., Cano S., Mller-Khn A., Gnther A., Kukla C., Moritz T. Fused filament fabrication (FFF) of metal-ceramic components. J. Vis. Exp. 2019. Article 143.




© 2023 Kibernetika.org. All rights reserved.