Cybernetics And Systems Analysis logo
Editorial Board Announcements Abstracts Authors Archive
Cybernetics And Systems Analysis
International Theoretical Science Journal
-->

UDC 519.63; 519.64
M.R. Petryk1, I.V. Boyko2, O.M. Khimich3, V.A. Sydoruk4


1 Ternopil Ivan Puluj National Technical University, Ternopil, Ukraine

mykhaylo_petryk@tntu.edu.ua

2 Ternopil Ivan Puluj National Technical University, Ternopil, Ukraine

boyko.i.theory@gmail.com

3 V.M. Glushkov Institute of Cybernetics, National Academy of Sciences of Ukraine, Kyiv, Ukraine

khimich505@gmail.com

4 V.M. Glushkov Institute of Cybernetics, National Academy of Sciences of Ukraine, Kyiv, Ukraine

wolodymyr.sydoryk@gmail.com

HIGH-PERFORMANCE METHODS OF MODELING THE NANO-ADSORPTION
AND DIFFUSION WITH FEEDBACK IN HETEROGENEOUS
CYLINDRICAL MULTICOMPONENT NANOPOROUS MEDIA

Abstract. New high-performance analytical methods are developed for modeling the fields of diffused gas concentrations in intra- and interparticle spaces in inhomogeneous cylindrical n -component nanoporous media. The proposed approach is based on the Heaviside operational method and Cauchy influence matrices for inhomogeneous adsorption boundary-value problems arising from systems of partial differential equations.

Keywords: multicomponent nanoadsorption and diffusion model, heterogeneous nanoporous media, Heaviside operational method.


full text

REFERENCES

  1. Van Assche T.R.C., Baron G.V, Denayer J.F.M. An explicit multicomponent adsorption isotherm model: Accounting for the size-effect for components with Langmuir adsorption behavior. Adsorption. 2018. Vol. 24. Р. 517–530. https://doi.org/10.1007/s10450-018-9962-1 .

  2. Rad L.R., Anbia M. Zeolite-based composites for the adsorption of toxic matters from water: A review. Journal of Environmental Chemical Engineering. 2021. Vol. 9, Iss. 5. 106088. https://doi.org/10.1016/j.jece.2021.106088 .

  3. Nandanwar S.U., Corbin D.R., Shiflett M.B. A review of porous adsorbents for the separation of nitrogen from natural gas. Industrial & Engineering Chemistry Research. 2020. Vol. 59, N 30. P. 13355–13369. https://doi.org/10.1021/acs.iecr.0c02730.

  4. Feng C., Jiaqiang E., Han W., Deng Y., Zhang B., Zhao X., Han D. Key technology and application analysis of zeolite adsorption for energy storage and heat-mass transfer process: A review. Renewable and Sustainable Energy Reviews. 2021. Vol. 144, 110954. https://doi.org/10.1016/j.rser.2021.110954.

  5. Unger N., Bond T.C., Wang J.S., Koch D.M., Menon S., Shindell D.T., Bauer S. Attribution of climate forcing to economic sectors. Proc. Natl. Acad. Sci. 2010. Vol. 107, N 8. P. 3382–3387. https://doi.org/10.1073/pnas.0906548107 .

  6. Niu X., Bai Y., Du Y., Qi H., Chen Y. Size controllable synthesis of ZSM-5 zeolite and its catalytic performance in the reaction of methanol conversion to aromatics. Royal Society Open Science. 2022. Vol. 9, Iss. 3. 211284. https://doi.org/10.1098/rsos.211284.

  7. Puertolas B., Navarro M.V, Lopez J.M., Murillo R., Mastral A.M., Garcia T. Modelling the heat and mass transfers of propane onto a ZSM-5 zeolite. Separation Purification Technology. 2012. Vol. 86. P. 127–136. https://doi.org/10.1016/j.seppur.2011.10.036 .

  8. Krger J., Ruthven D.M., Theodorou D.N. Diffusion in nanoporous materials. Hoboken, USA: John Wiley & Sons, 2012.

  9. Krishna R. Thermodynamically consistent methodology for estimation of diffusivities of mixtures of guest molecules in microporous materials. ACS Omega. 2019. Vol. 4, N 8. P. 13520–13529. https://doi.org/10.1021/acsomega.9b01873.

  10. Petryk M., Leclerc S., Canet D., Sergienko I., Deineka V., Fraissard J. Competitive diffusion of gases in a zeolite bed: NMR and slice procedure, modelling and parameter identification. The Journal Physical Chemistry C. 2015. Vol. 119, N 47. P. 26519–26525. https://doi.org/10.1021/acs.jpcc.5b07974.

  11. Petryk M., Gancarczyk T., Khimich O. Methods of mathematical modeling and identification of complex processes and systems on the basis of high-performance calculations (Neuro-and nanoporous feedback cyber systems, models with sparse structure data, parallel computations). Wydawnictwo Naukowe Akademii Techniczno-Humanistycznej w Bielsku-Biaїej, 2021.

  12. Petryk M.R., Khimich A., Petryk M.M., Fraissard J. Experimental and computer simulation studies of dehydration on microporous adsorbent of natural gas used as motor fuel. Fuel. 2019. Vol. 239. P. 1324–1330. https://doi.org/10.1016/j.fuel.2018.10.134 .

  13. Ximich O.M., Petryk M.R., Mykhalyk D.M., Boyko I.V., Popov O.V., Sydoruk V.A. Methods of mathematical modeling and identification of complex processes and systems based on high-performance computing [in Ukrainian]. Kyiv: V.M. Glushkov Institute of Cybernetics named, 2019. 190 p.

  14. Sergienko I.V., Peryk M.R., Fraissard J., Leclerk S. Highly efficient methods of the identification of competitive diffusion parameters in heterogeneous media of nanoporous particles. Cybernetics and Systems Analysis. 2015. Vol. 51, N 4. P. 529–546. https://doi.org/10.1007/s10559-015-9744-7 .

  15. Doetsch G. Handbuch der Laplace-transformation: Band I: Theorie der Laplace-transformation. Springer Basel AG, 2013. 581 p.

  16. Staines J. The Heaviside operational calculus: The Laplace transform for electrical engineers. California: Amazon, 2013.

  17. Lenyuk M.P., Petryk M.R. Integral Fourier, Bessel transforms with a spectral parameter in problems of mathematical modeling of mass transfer in heterogeneous media [in Ukrainian]. Kyiv: Nauk. Dumka, 2000. 372 p.

  18. Petryk M.R., Boyko I.V., Khimich O.M., Petryk O.Yu. High-performance methods of modeling the adsorption with feedback in heterogeneous multicomponent nanoporous media. Cybernetics and System Analysis. 2022. Vol. 58, N 5. P. 787–805. https://doi.org/10.1007/s10559-022-00512-8.

  19. Petryk M.R., Boyko I.V., Khimich O.M., Petryk M.M. High-performance supercomputer technologies of simulation of nanoporous feedback systems for adsorption gas purification. Cybernetics and System Analysis. 2020. Vol. 56, N 5. Р. 835–847. https://doi.org/10.1007/ s10559-020-00304-y .

  20. Deng H. A Heaviside function-based density representation algorithm for truss-like buckling-induced mechanism design. J. Numer. Methods Eng. 2019. Vol. 119. Р. 1069–1097.

  21. Broas M., Kanninen O., Vuorinen V., Tilli M., Paulasto-Krckel M. Chemically stable atomic-layer-deposited films for processability. ACS Omega. 2017. Vol. 7. Р. 3390–33981.

  22. Arl D., Rog V., Adjeroud N., Pistillo B.R., Sarr M., Bahlawane N., Lenoble D. thin film growth through a pure atomic layer deposition technique at room temperature. RSC Adv. 2020. Vol. 31. Р. 18073–180812.




© 2023 Kibernetika.org. All rights reserved.