UDC 519.21
1 V.M. Glushkov Institute of Cybernetics, National Academy of Sciences of Ukraine, Kyiv, Ukraine
bila.galyna@gmail.com
|
2 V.M. Glushkov Institute of Cybernetics, National Academy of Sciences of Ukraine, Kyiv, Ukraine
a.k@gmail.com
|
ASYMPTOTIC PROPERTIES OF A CLASS OF PERIODIC ESTIMATES
Abstract. In this article, one class of periodogram estimates of unknown parameters of the nonlinear regression model “signal plus noise” is considered.
The asymptotic normality is proved, provided that the regression function is almost periodic, and the noise is a functional
of a strongly dependent Gaussian random process.
Keywords: long-range dependence, Gaussian noise, periodogram estimation, asymptotic normality.
full text
REFERENCES
- Leonenko N.N., Ivanov A.V. Statistical analysis of random fields [in Russian]. Kyiv: Vishcha schk., 1986. 216 p.
- Knopov P.S., Kasitskaya E.I. Large deviations of empirical estimates in stochastic programming problems. Cybern. Syst. Analysis. 2004. Vol. 40, N 4. P. 510–516.
- Knopov P.S., Kasitskaya E.J. On large deviations of empirical estimates in a stochastic programming problem with time-dependent observations. Cybern. Syst. Analysis. 2010. Vol. 46, N 5. P. 724–728.
- Knopov P.S., Kasitskaya E.J. Empirical estimates in stochastic optimization and identification. New York: Kluwer Academic Publishers, 2002. 250 p .
- Ivanov A.V. One solution to the problem of identifying hidden periodicities. Probability theory and math. statistics. 1979. Iss. 20. P. 44–59.
- Knopov P.S., Pepelyaev V.A. Nonparametric estimate of almost periodic signals. Cybern. Syst. Analysis. 2007. Vol. 43. N 3. P. 362–367.
- Zhurakovskyi B.M., Ivanov O.V. Asymptotic properties of periodogram parameter estimates of a modulated quasi-periodic signal. Naukovi visti NTUU «KPI». Teoret. ta prykl. probl. matematyky. 2013. Iss. 4. P. 45–54.
- Ivanov A.V., Leonenko N. N. Asymptotic behavior of -estimators in continuous-time non-linear regression with long-range dependent errors. Random Oper. Stochasic Equation. 2002. Vol. 10, N. 3. P. 201–222.
- Beran J. Statistics for Long-Memory Processes. New York: Chapman and Hall, 1994. 315 p.
- Bila G.D., Knopov O.P. One class of periodogram estimates. Theory of optimal solutions. Kyiv: V.M. Glushkov Institute of Cybernetics of the National Academy of Sciences of Ukraine, 2013. P. 56–62.
- Bila G.D. Estimation of a two-dimensional signal from observations with strongly dependent random noise. Applied statistics. Actuarial and financial mathematics. 2013. N 2. P. 116–134.
- Dourhan P., Lang G., Surgailis D., Tessire G. Dependence in probability and statistics. Berlin; Heidelberg: Springer, Verlag, 2010. 224 p.