DOI
10.34229/KCA2522-9664.24.4.3
UDC 517.9:519.6
1 V.M. Glushkov Institute of Cybernetics, National Academy of Sciences of Ukraine, Kyiv,
Ukraine
v_bulav@ukr.net
|
|
ON SOME GENERALIZATIONS OF THE BI-ORDINAL
HILFER’S FRACTIONAL DERIVATIVE
Abstract. The article is devoted to the generalization of the concept of bi-ordinal Hilfer’s fractional derivative, previously introduced in an author’s work. In particular, the concept of the bi-ordinal Hilfer’s derivative of a function with respect to another function and proportional bi-ordinal Hilfer derivative of a function with respect to another function are introduced, the main compositional properties for operators of bi-ordinal fractional derivatives and integrals are given, a formula for the Laplace transform of the proportional bi-ordinal Hilfer derivative is obtained, and closed-form solutions to the Cauchy-type problems for linear equations with the mentioned generalized bi-ordinal Hilfer’s fractional derivatives are constructed.
Keywords: Hilfer’s fractional derivative, bi-ordinal Hilfer’s fractional derivative, bi-ordinal Hilfer’s fractional derivative of a function with respect to another function, proportional bi-ordinal Hilfer’s fractional derivative, composite properties, Laplace transform, Cauchy-type problems, closed-form solutions.
full text
REFERENCES
- Podlubny I. Fractional differential equations. New York: Academic Press, 1999. 341 p.
- Kilbas A.A., Srivastava H.M., Trujillo J.J. Theory and applications of fractional differential equations. Amsterdam: Elsevier, 2006. 523 p.
- Sandev T., Tomovsky Z. Fractional equations and models. Theory and applications. Cham, Switzerland: Springer Nature Switzerland AG, 2019. 344 p.
- Uchaikin V.V. Fractional derivatives for phusicsts and engineers. Berlin, Heidelberg; Springer, 2013. 512 p.
- Mainardi F. Fractional calculus and waves in linear viscoelasticity. London: Imperial College Press, 2010. 368 p.
- Povstenko Yu. Linear fractional diffusion-wave equation for scientists and engineers. Switzerland: Springer Int. Publ., 2015. 460 p.
- Magin R.L. Fractional calculus in bioengineering. Connecticut, USA: Begel House Publishers Inc., 2006. 355 p.
- Ninghu Su. Fractional calculus for hydrology, soil science and geomechanics. CRC Press, Taylor & Francis Group, 2021. 336 p.
- Deseri L., Zingales M. A mechanical picture of fractional-order Darcy equation. Commun. Nonlin. Sci. Numer. Simulat. 2015. Vol. 20. P. 940–949.
- Tomovski Z., Sandev T., Metzler R., Dubbeldam J.L. Generalized space-time fractional diffusion equation with composite fractional time derivative. Physica A. 2012. Vol. 391. P. 2527– 2542.
- Al-Homidan S., Ghanam R.A., Tatar N. On a generalized diffusion equation arising in petroleum engineering. Advances in Differential Equations. 2013. Vol. 349. P. 1–14.
- Bogayenko V.O., Bulavatsky V.M., Khimich O.M. Mathematical and computer modeling in problems of hydrogeomigratory dynamics. Kyiv: Nauk. dumka, 2022. 249 p.
- Bulavatsky V.M., Kryvonos I.G. Mathematical models with a control function for investigation of fractional-differential dynamics of geomigration processes. Journal of Automation and Information Science. 2014. Vol. 46, N 6. P. 1–11.
- Bulavatsky V.M. Mathematical models and problems of fractional differential dynamics of some relaxation filtration processes. Cybernetics and Systems Analysis. 2018. Vol. 54, N 5. P. 727–736.
- Almeida R. A Caputo fractional derivative of a function with respect to another function. Commun. Nonlin. Sci. Numer. Simul. 2017. Vol. 44. P. 160–181.
- J. Vanterler da C. Sousa, E. Capelas de Oliveira. On the -Hilfer fractional derivative function. Commun. Nonlin. Sci. Numer. Simul. 2018. Vol. 60. P. 72–91.
- J. Vanterler da C. Sousa, E. Capelas de Oliveira. A Gronwall inequality and the Cauchy-type problem by means of -Hilfer operator. Differ. Equat. Appl. 2019. Vol. 11(1). P. 87–106.
- Kuccehe K.D., Mali A.D., J. Vanterler da C. Sousa. On the nonlinear -Hilfer fractional differential equations. Comput. Appl. Math. 2019. Vol. 38 . P. 73–98. doi.org/10.1007/s40314-019-0833-5.
- Hilfer R. Fractional time evolution. Applications of Fractional Calculus in Physics. R. Hilfer (ed.). Singapore: World scientific, 2000. P. 87–130.
- Oliveira D.S., E. Capelas de Oliveira. Hilfer-Katugampola fractional derivative. arXiv: 1705.07733v1 [math. CA], 15 May 2017.
- Katugampola U.N. A new approach to generalized fractional derivatives. Bull. Math. Anal. Appl. 2014. N 6. P. 1–15.
- Ishfaq Mallah, Idris Ahmed, Ali Akgul, Fahd Jarad, Subhash Alha. On -Hilfer generalized proportional fractional operators. AIMS Mathematics. 2021. Vol. 7(1). P. 82–103.
- Fand Jarad, Thabet Abdeljawad, Jehad Alzabut. Generalized fractional derivatives generated by a class of local proportional derivatives. Europ. Phys. J. Spetial Topics. 2017. Vol. 226. P. 3457–3471.
- Fand Jarad, Thabet Abdeljawad, Saima Rashid, Zakia Hammouch. More properties of the proportional fractional integral and derivatives of a function with respect to another function. Adv. Differ. Equat. 2020. Vol. 303. P. 1–16. doi.org.10.1186/s13662-020-02767-x .
- Weerawat Sudsutad, Chatthai Thaiprayoon, Bounmy Khaminsou, Jehad Alzabut, Jutarat Kongson. A Gronwall inequality and its applications to the Cauchy-type problem under -Hilfer proportional fractional operators. Journal of Inequalities and Applications. 2023. Vol. 2023:20. P. 1–35. doi.org.10.1186/s13660-023-02929-x .
- Bulavatsky V.M. Closed form of the solutions of some boundary-value problems for anomalous diffusion equation with Hilfer’s generalized derivative. Cybernetics and Systems Analysis. 2014. Vol. 50, N 4. P. 570–577.
- Karimov E.T., Toshtemirov B.H. Non-local boundary value problem for a mixed-type equation involving the bi-ordinal Hilfer fractional differential operators. Uzbek Mathematical Journal. 2021. Vol. 65(2). P. 61–77.
- Karimov E.T., Ruzhansky M., Toshtemirov B.H. A boundary-value problem for a mixed type equation involving hyper-Bessel fractional differential operator and Hilfer’s bi-ordinal fractional derivative. arXiv:2103.08989v2 [math. AP], 15 Jul 2021.
- Karimov E.T. Boundary value problems with integral transmitting conditions and inverse problems for integer and fractional order differential equations (DSc Thesis). Vol. 1. Tashkent: Romanovskiy Institute of Mathematics. Uzbekistan Academy of Sciences, 2020. 207 p.
- Abramovitz M., Stegun I.A. Handbook of mathematical functions. New York: Dover, 1965. 831 p.
- Fand Jarad, Thabet Abdeljawad. Generalized fractional derivatives and Laplace transform. Discrete and Continuous Dynamical Systems. Ser. S. 2020. Vol. 13, N 3. P. 709–722.
- Gorenflo R., Kilbas A.A., Mainardi F., Rogosin S.V. Mittag-Leffler functions, related topics and applications. Berlin: Springer-Verlag, 2014. 454 p.
- Chitalkar-Dhaigude C.P., Sandeep P. Bhairat, Dhaigude D.B. Solution of fractional differential equations involving Hilfer fractional derivative. Bulletin of the Marathwada Mathematical Society. 2017. Vol. 18, N 2. P. 1–13.
- Sneddon Ian N. The use of integral transform. New York: Mc. Graw-Hill Book Comp., 1972. 539 p.