Cybernetics And Systems Analysis logo
Editorial Board Announcements Abstracts Authors Archive
KIBERNETYKA TA SYSTEMNYI ANALIZ
International Theoretical Science Journal
-->


DOI 10.34229/KCA2522-9664.25.1.14
UDC 519.8
I.V. Kal’chuk1, Y.V. Pryvalov2


1 Lesya Ukrainka Volyn National University, Lutsk, Ukraine

k.inna.80@gmail.com

2 Lesya Ukrainka Volyn National University, Lutsk, Ukraine

pryvalov.yura@gmail.com

ON SOME OPTIMIZATION PROPERTIES OF THE GAUSS–WEIERSTRASS OPERATOR

Abstract. We consider the problem of the theory of function approximation concerning the analysis of linear summation methods of Fourier series, namely finding the optimal ones in one sense or another. To determine the optimal approximation order, the authors solve two important problems. First, the Gauss–Weierstrass operator is proved to be a saturated method, and its saturation order is found; second, saturation classes for this method are found.

Keywords: optimization properties of functions, Gauss–Weierstrass operator, saturation order, saturation class.


full text

REFERENCES

  • 1. Kondratenko Y., Kuntsevich V.M., Chikrii A.A., Gubarev V. Advanced control systems: Theory and applications. 2024. P. 1–441.

  • 2. Nakonechnyi O.G., Kapustian O.A., Chikrii A.O. Approximate guaranteed mean square estimates of functionals on solutions of parabolic problems with fast oscillating coefficients under nonlinear observations. Cybernetics and Systems Analysis. 2019. Vol. 55, N 5. P. 785–795. https://doi.org/10.1007/s10559-019-00189-6. .

  • 3. Zhyhallo T.V., Kharkevych Yu.I. Fourier transform of the summatory Abel–Poisson function. Cybernetics and Systems Analysis. 2022. Vol. 58, N 6. P. 957–965. https://doi.org/10.1007/ s10559-023-00530-0. .

  • 4. Kharkevych Yu. Approximation theory and related applications. Axioms. 2022. Vol. 11, N 12: 736. https://doi.org/10.3390/axioms11120736. .

  • 5. Pilipenko Yu.B., Chikrii A.A. Oscillatory conflict-control processes. Journal of Applied Mathematics and Mechanics. 1993. Vol. 57, N 3. P. 407–417. https://doi.org/10.1016/ 0021-8928(93)90119-7. .

  • 6. Korenkov M., Kharkevych Yu. On the asymptotics and distribution of values of the Jacobi theta functions and the estimate of the type of the Weierstrass sigma functions. Axioms. 2022. Vol. 11, N 1:12. https://doi.org/10.3390/axioms11010012. .

  • 7. Stepanets A.I. Methods of approximation theory. Part I [in Russian]. Kyiv: Institute of Mathematics of the National Academy of Sciences of Ukraine, 2002. 427 p.

  • 8. Zhyhallo K.M., Kharkevych Yu.I. Approximation of -differentiable functions of low smoothness by biharmonic Poisson integrals. Ukr. Math. J. 2012. Vol. 63, N 12. P. 1820–1844. https://doi.org/10.1007/s11253-012-0616-2. .

  • 9. Kal’chuk I.V., Kharkevych Yu.I. Complete asymptotics of the approximation of function from the Sobolev classes by the Poisson integrals. Acta Comment. Univ. Tartu. Math. 2018. Vol. 22, N 1. P. 23–36. https://doi.org/10.12697/ACUTM.2018.22.03. .

  • 10. Korenkov M.E., Kharkevych Yu.I. On the asymptotics of associated sigma-functions and Jacobi theta-functions. Ukr. Math. J. 2019. Vol. 70, N 8. P. 1326–1330. https://doi.org/ 10.1007/s11253-018-1572-2. .

  • 11. Abdullayev F.G., Bushev D.M., Imashkyzy M., Kharkevych Yu.I. Isometry of the subspaces of solutions of systems of differential equations to the spaces of real functions. Ukr. Math. J. 2020. Vol. 71, N 8. P. 1153–1172. https://doi.org/10.1007/s11253-019-01705-9. .

  • 12. Kharkevych Yu.I., Pozharska K.V. Asymptotics of approximation of conjugate functions by Poisson integrals. Acta Comment. Univ. Tartu. Math. 2018. Vol. 22, N 2. P. 235–243. https://doi.org/10.12697/ACUTM.2018.22.19. .

  • 13. Kharkevych Yu.I., Stepaniuk T.A. Approximate properties of Abel–Poisson integrals on classes of differentiable functions defined by moduli of continuity. Carpathian Math. Publ. 2023. Vol. 15, N 1. P. 286–294. https://doi.org/10.15330/cmp.15.1.286-294. .

  • 14. Zhyhallo K.M., Kharkevych Yu.I. Approximation of functions from the classes by biharmonic Poisson integrals. Ukr. Math. J. 2011. Vol. 63, N 7. P. 1083–1107. https://doi.org/ 10.1007/s11253-011-0565-1. .

  • 15. Kharkevych Yu.I., Zhyhallo T.V. Approximation of functions from the class by Poisson biharmonic operators in the uniform metric. Ukr. Math. J. 2008. Vol. 60, N 5. P. 769–798. https://doi.org/10.1007/s11253-008-0093-9. .

  • 16. Zhyhallo K.M., Kharkevych Yu.I. Approximation of conjugate differentiable functions by biharmonic Poisson integrals. Ukr. Math. J. 2009. Vol. 61, N 3. P. 399–413. https://doi.org/ 10.1007/ .

  • 17. Zhyhallo T.V., Kharkevych Yu.I. Approximating properties of biharmonic Poisson operators in the classes . Ukr. Math. J. 2017. Vol. 69, N 5. P. 757–765. https://doi.org/10.1007/ s11253-017-1393-8. .

  • 18. Zhyhallo K.M., Kharkevych Yu.I. On the approximation of functions of the Hlder class by triharmonic Poisson integrals. Ukr. Math. J. 2001. Vol. 53, N 6. P. 1012–1018. https://doi.org/ 10.1023/A:1013364321249. .

  • 19. Hrabova U.Z., Kal’chuk I.V., Stepaniuk T.A. Approximation of functions from the classes by Weierstrass integrals. Ukr. Math. J. 2017. Vol. 69, N 4. P. 598–608. https://doi.org/ 10.1007/s11253-017-1383-x. .

  • 20. Grabova U.Z., Kal’chuk I.V., Stepaniuk T.A. Approximative properties of the Weierstrass integrals on the classes . J. Math. Sci. (N.Y.). 2018. Vol. 231, N 1. P. 41–47. https://doi.org/10.1007/s10958-018-3804-2. .

  • 21. Bushev D.M., Kharkevych Yu.I. Approximation of classes of periodic multivariable functions by linear positive operators. Ukr. Math. J. 2006. Vol. 58, N 1. P. 12–21. https://doi.org/ 10.1007/s11253-006-0048-y. .

  • 22. Zajac J., Korenkov M.E., Kharkevych Yu.I. On the asymptotics of some Weierstrass functions. Ukr. Math. J. 2015. Vol. 67, N 1. P. 154–158. https://doi.org/10.1007/s11253-015-1070-8. .

  • 23. Prokopovich P.V., Chikrii A.A. A linear evasion problem for interacting groups of objects. Journal of Applied Mathematics and Mechanics. 1994. Vol. 58, N 4. P. 583–591. URL: https//doi.org/ 10.1016/ .

  • 24. Baranovskaya L.V., Chikrii A.A., Chikrii Al.A. Inverse Minkowski functional in a nonstationary problem of group pursuit. Journal of Computer and Systems Sciences International. 1997. Vol. 36, N 1. P. 101–106.

  • 25. Zhyhallo K.M., Kharkevych Yu.I. On some approximate properties of biharmonic Poisson integrals in the integral metric. Carpathian Math. Publ. 2024. Vol. 16, Iss. 1. P. 303–308. https://doi.org/10.15330/cmp.16.1.303-308. .

  • 26. Vlasenko L.A., Rutkas A.G., Semenets V.V., Chikrii A.A. On the optimal impulse control in descriptor systems. Journal of Automation and Information Sciences. 2019. Vol. 51, N 5. P. 1–15. https://doi.org/10.1615/JAutomatInfScien.v51.i5.10. .

  • 27. Gavrilyuk V.T., Stepanets A.I. Problems of saturation of linear methods. Ukr. Math. J. 1991. Vol. 43, N 3. P. 255–272. https://doi.org/10.1007/BF01060833. .

  • 28. Zhyhallo T.V., Kharkevych Yu.I. Some asymptotic properties of the solutions of Laplace equations in a unit disk. Cybernetics and Systems Analysis. 2023. Vol. 59, N 3. P. 449–456. https://doi.org/10.1007/s10559-023-00579-x. .

  • 29. Chikrij A.A., Bezmagorychnyj V.V. Method of resolving functions in linear differential games with integral restrictions. Soviet Automatic Control. 1993. Iss. 4. P. 26–36.

  • 30. Chikrii A.A., Matychyn I.I., Chikrii K.A. Differential games with impulse control. Annals of the International Society of Dynamic Games. 2007. Vol. 9. P. 37–55. https://doi.org/10.1007/ 978-0-8176-4553-3_2. .

  • 31. Korenkov M.E., Zajac J., Kharkevych Y.I. Nevanlinna characteristics and defective values of the Weierstrass zeta function. Ukr. Math. J. 2011. Vol. 63, N 5. P. 838–841. https://doi.org/ 10.1007/s11253-011-0547-3. .

  • 32. Kharkevych Yu.I., Khanin O.G. Asymptotic properties of the solutions of higher-order differential equations on generalized Hlder classes. Cybernetics and Systems Analysis. 2023. Vol. 59, N 4. P. 633–639. https://doi.org/10.1007/s10559-023-00598-8. .

  • 33. Chikrii A.A., Belousov A.A. On linear differential games with integral constraints. Proceedings of the Steklov Institute of Mathematics. 2010. Vol. 269, Suppl 1. P. 69–80. https://doi.org/10.1134/S0081543810060076. .

  • 34. Bushev D.M., Kharkevych Y.I. Conditions of convergence almost everywhere for the convolution of a function with delta-shaped kernel to this function. Ukr. Math. J. 2016. Vol. 67, N 11. P. 1643–1661. Й .

  • 35. Kharkevych Yu.I. Exact values of the approximations of differentiable functions by Poisson-type integrals. Cybernetics and Systems Analysis. 2023. Vol. 59, N 2. P. 274–282. Й .

  • 36. Zhyhallo K.M., Kharkevych Yu.I. Complete asymptotics of the deviation of a class of differentiable functions from the set of their harmonic Poisson integrals. Ukr. Math. J. 2002. Vol. 54, N 1. P. 51–63. Й .

  • 37. Vlasenko L.A., Rutkas A.G., Semenets V.V., Chikrii A.A. Stochastic optimal control of a descriptor system. Cybernetics and Systems Analysis. 2020. Vol. 56, N 2. P. 204–212. Й .

  • 38. Chikrii A.A., Chikrii G.Ts. Game problems of approach for quasilinear systems of general form. Proceedings of the Steklov Institute of Mathematics. 2019. Vol. 304, Suppl 1. P. S44–S58. Й .

  • 39. Nakonechnyi A.G., Kapustian E.A., Chikrii A.A. Control of impulse systems in conflict situation. Journal of Automation and Information Sciences. 2019. Vol. 51, N 9. P. 1–11. https://doi.org/10.1615/JAutomatInfScien.v51.i9.10. .




© 2025 Kibernetika.org. All rights reserved.