DOI
10.34229/KCA2522-9664.25.3.7
UDC 517.58, 517.955
1 V.I. Romanovsky Institute of Mathematics, Tashkent, Uzbekistan; Ghent University, Ghent, Belgium
anvanhasanov@yahoo.com
|
2 V.I. Romanovsky Institute of Mathematics, Tashkent, Uzbekistan; Ghent University, Ghent, Belgium
erkinjon@gmail.com
|
EULER-TYPE INTEGRAL REPRESENTATIONS FOR TWO-DIMENSIONAL
FUNCTIONS OF THE MITTAG-LEFFLER-TYPE
Abstract. The Euler-type integral representations for two two-dimensional functions of the Mittag-Leffler type are established.
In these integral representations, these two-dimensional functions are represented in terms of themselves with different parameters,
in terms of known hypergeometric functions of a single variable, or via another two-dimensional function of Mittag-Leffler type.
Keywords: two-dimensional functions of Mittag-Leffler type, Euler integrals, hypergeometric functions, integral representation.
full text
REFERENCES
- 1. Samko S.G., Kilbas A.A., Marichev O.I. Fractional integrals and derivatives: theory and applications. New York: Gordon and Breach Science Publishers, 1993. xxxvi, 976 p.
- 2. Luchko Y. Initial-boundary-value problems for the generalized multi-term time- fractional diffusion equation. J. Math. Anal. Appl. 2011. Vol. 374, Iss. 2. P. 538–548. https://doi.org/10.1016/.
- 3. Li Z., Liu Y., Yamamoto M. Initial-boundary value problems for multi-term time-fractional diffusion equations with positive constant coefficients. Appl. Math. Comput. 2015. Vol. 257. P. 381–397. https://doi.org/10.1016/.
- 4. Karimov E., Al-Salti N., Kerbal S. An inverse source non-local problem for a mixed type equation with a Caputo fractional differential operator. East Asian Journal of Applied Mathematics. 2017. Vol. 7, Iss. 2. P. 417–438. "https://doi.org/10.4208/.
- 5. Bulavatsky V.M. Closed form of the solutions of some boundary-value problems for anomalous diffusion equation with Hilfer’s generalized derivative. Cybernetics and Systems Analysis. 2014. Vol. 50, N 4. P. 570–577. https://doi.org/10.1007/.
- 6. Karimov E.T., Hasanov A. On a boundary-value problem in a bounded domain for a time-fractional diffusion equation with the Prabhakar fractional derivative. Bulletin of the Karaganda university Mathematics series. 2023. N 3(111). P. 39–46. https://doi.org/ 10.31489/.
- 7. Fernandez A., Krt C., zarslan M.A. A naturally emerging bivariate Mittag-Leffler function and associated fractional-calculus operators. Comp. Appl. Math. 2020. Vol. 39. Article number 200. https://doi.org/10.1007/.
- 8. Fernandez A., zarslan M.A., Baleanu D. On fractional calculus with general analytic kernels. Appl. Math. Comp. 2019. Vol. 354. P. 248–265. https://doi.org/10.1016/.
- 9. Ahmadova A., Huseynov I.T., Fernandez A., Mahmudov N.I. Trivariate Mittag-Leffler functions used to solve multi-order systems of fractional differential equations. Communications in Nonlinear Science and Numerical Simulation. 2021. Vol. 97. Article number 105735. https://doi.org/10.1016/.
- 10. Mittag-Leffler G.M. Sur la nouvelle fonction . Comptes Rendus de l’Academie des Sciences Paris. 1903. Vol. 137. P. 554–558.
- 11. Dzhrbashyan M.M. Integral transformations and representations of functions in the complex domain [in Russian]. Moscow: Nauka, 1966. 672 p. https://z-lib.io/book/.
- 12. Gorenflo R., Kilbas A.A., Rogosin S.V. On the generalized Mittag-Leffler type function. Integral Transforms and Special Functions. 1998. Vol. 7, Iss. 3–4. P. 215–224. https:// doi.org/10.1080/.
- 13. Mainardi F., Gorenflo R. On Mittag-Leffler function in fractional evaluation processes. J. Comput. Appl. Math. 2000. Vol. 118, Iss. 1–2. P. 283–299. https://doi.org/10.1016/.
- 14. Kilbas A.A., Saigo M., Saxena R.K. Generalized Mittag-Leffler function and generalized fractional calculus operators. Integral Transforms and Special Functions. 2004. Vol. 15, Iss. 1. P. 31–49. https://doi.org/10.1080/.
- 15. Kilbas A.A., Saigo M. On Mittag-Leffler type function, fractional calculus operators and solution of integral equations. Integral Transforms and Special Functions. 1996. Vol. 4, Iss. 4. P. 355–370. https://doi.org/10.1080/.
- 16. Prabhakar T.R. A singular integral equation with a generalized Mittag-Leffler function in the kernel. Yokohama Math. J. 1971. Vol. 19. P. 7–15. https://ynu.repo.nii.ac.jp/record/.
- 17. Salim T.O., Faraj A.W. A generalization of Mittag-Leffler function and integral operator associated with fractional calculus. J. Frac. Calc. Appl. 2012. Vol. 3, N 5. P. 1–13. https://www.naturalspublishing.com/.
- 18. Salim T.O. Some properties relating to the generalized Mittag–Leffler function. Adv. Appl. Math. Anal. 2009. Vol. 4. P. 21–30. https://www.ripublication.com/.
- 19. Saigo M., Kilbas A.A. On Mittag-Leffler type function and applications. Integral Transforms and Special Functions. 1998. Vol. 7, Iss. 1–2. P. 97–112. https://doi.org/10.1080/.
- 20. Shukla A.K., Prajapati J.C. On a generalization of Mittag-Leffler function and its properties. J. Math. Anal. Appl. 2007. Vol. 336, Iss. 2. P. 797–811. https://doi.org/10.1016/.
- 21. Wiman A. Uber den fundamental Satz in der theorie der funktionen . Acta Math. 1905. Vol. 29. P. 191–201. https://doi.org/10.1007/.
- 22. Nishimoto K. N-fractional calculus of products of some power functions and some doubly infinite sums. Appl. Math. Comput. 2007. Vol. 187, Iss. 1. P. 340–349. https://doi.org/ 10.1016/.
- 23. Saxena R.K., Kalla S.L., Saxena R. Multivariate analogue of generalized Mittag-Leffler function. Integral Transforms and Special Functions. 2011. Vol. 22, Iss. 7. P. 533–548. https://doi.org/10.1080/.
- 24. Luchko Y., Gorenflo R. An operational method for solving fractional differential equations with the Caputo derivatives. Acta Mathemativa Vietnamica. 1999. Vol. 24, N 2. P. 207–233. http://journals.math.ac.vn/acta/.
- 25. Gorenflo R., Kilbas A., Mainardi F., Rogosin S. Mittag-Leffler functions, related topics and applications. 2nd edition. Springer-Verlag GmbH Germany, part of Springer Nature, 2020. 548 p.
- 26. Srivastava H.M., Daoust M.C. A note on the convergence of Kampe De Feriet’s double hypergeometric series. Mathematische Nachrichten. 1972. Vol. 53, Iss. 1–6. P. 151–159. https://doi.org/10.1002/.
- 27. Srivastava H.M., Daoust M.C. On Eulerian integrals associated with Kampe de Feriet’s function. Publications de l’Institut Mathematique, Nouvelle serie. 1969. Vol. 9 (23). P. 199–202. http://elib.mi.sanu.ac.rs/files.
- 28. Garg M., Manohar P., Kalla S.L. A Mittag–Leffler type function of two variables. Integral Transforms and Special Functions. 2013. Vol. 24, Iss. 11. P. 934–944. https://doi.org/ 10.1080/.
- 29. Bin-Saad M.G., Hasanov A., Ruzhansky M. Some properties relating to the Mittag–Leffler function of two variables. Integral Transforms and Special Functions. 2022. Vol. 33, Iss. 5. P. 400–418. https://doi.org/10.1080/.
- 30. Yang X.-J. Theory and applications of special functions for scientists and engineers. Singapore: Springer, 2021. XXI, 895 p. https://link.springer.com/book/ 10.1007/.
- 31. Annaby M.H., Mansour Z.S. -Fractional calculus and equations. Berlin; Heidelberg: Springer, 2012. XIX, 318 p.
- 32. Karimov E., Sobirov Z., Khujakulov J. A non-local problem for a time fractional differential equation with the Hilfer operator on metric graph. Math. Meth. Appl. Sci. 2024. Vol. 47, Iss. 18. P. 13562–13580. https://doi.org/10.1002/mma.10207.
- 33. Kutyniok G. The mathematics of artificial intelligence. arXiv:2203.08890v1 [cs.LG] 16 Mar 2022. https://doi.org/10.48550/.
- 34. Davis E., Aaronson S. Testing GPT-4 with Wolfram Alpha and Code Interpreter plug-ins on math and science problems. arXiv:2308.05713v3 [cs.AI] 17 Sep 2024. https://doi.org/ 10.48550/.
- 35. Karimov E., Tokmagambetov N., Toshpulatov M. On a mixed equation involving Prabhakar fractional order integral-differential operators. In: Extended Abstracts 2021/2022. Ruzhansky M., Van Bockstal K. (Eds.). APDEGS 2021. Trends in Mathematics. 2021. Vol. 2. P. 21–230. https://doi.org/10.1007/.