Cybernetics And Systems Analysis logo
Editorial Board Announcements Abstracts Authors Archive
KIBERNETYKA TA SYSTEMNYI ANALIZ
International Theoretical Science Journal
-->


DOI 10.34229/KCA2522-9664.25.3.10
UDC 519.21
Ya.M. Chabanyuk1, S.A. Semenyuk2, U.T. Khimka3,
R.A. Chypurko4



1 Ivan Franko Lviv National University, Lviv, Ukraine;
Lublin University of Technology, Lublin, Poland

yaroslav.chabanyuk@lnu.edu.ua,
y.chabanyuk@pollub.pl

2 National University “Lvivska Politekhnika,”
Lviv, Ukraine

serhii.a.semeniuk@lpnu.ua

3 Ivan Franko Lviv National University, Lviv, Ukraine

ulyana.khimka@lnu.edu.ua

4 Ivan Franko Lviv National University, Lviv, Ukraine

chypurko.roman@gmail.com

STOCHASTIC EVOLUTION UNDER MARKOV-MODULATED POISSON PERTURBATION IN
THE DIFFUSION APPROXIMATION SCHEME

Abstract. The authors study the asymptotic behavior of stochastic evolutionary systems with Markov-modulated Poisson perturbation in the diffusion approximation scheme. They consider combining the Poisson process with the Markov process, which allows for describing random transitions between different modes of evolution. The ergodic properties of the Markov-modulated Poisson process that ensure the stable behavior of the system on average are presented. Boundary generators for the original system of stochastic differential equations are constructed. The results allow for studying stochastic optimization and optimal control problems.

Keywords: stochastic evolution, Markov-modulated Poisson process, diffusion approximation schema.


full text

REFERENCES

  • 1. Wilkinson D.J. Stochastic modelling for systems biology. New York: Chapman and Hall/CRC, 2018. 404 p. https://doi.org/10.1201/.

  • 2. Dupačová J., Hurt J., Štěpán J. Stochastic modeling in economics and finance. New York: Springer New York, 2002. XIV, 386 p. https://doi.org/10.1007/.

  • 3. Zhuravel I., Semenyuk S. Stochastic models for computer malware propagation. Proc. 2024 IEEE 17th International Conference on Advanced Trends in Radioelectronics, Telecommunications and Computer Engineering (TCSET-2024) (08-12 October 2024, Lviv, Ukraine). Lviv, 2024. P. 424–427. https://doi.org/10.1109/.

  • 4. Fischer W., Meier-Hellstern K. The Markov-modulated Poisson process (MMPP) cookbook. Performance Evaluation. 1993. Vol. 18, Iss. 12. P. 149–171. https://doi.org/10.1016/.

  • 5. Scott S.L., Smyth P. The Markov modulated Poisson process and Markov Poisson cascade with applications to web traffic modeling. In: Bayesian Statistics 7: Proceedings of the Seventh Valencia International Meeting. Lindley V., Bernardo J.M. et al (Eds.). Oxford, 2003. P. 671–680. https://doi.org/10.1093/.

  • 6. Baños D.R., Cordoni F., Di Nunno G., Di Persio L., Rose E.E. Stochastic systems with memory and jumps. Journal of Differential Equations. 2019. Vol. 266, Iss. 9. P. 5772–5820. https://doi.org/10.1016/.

  • 7. Semenyuk S.A., Chabanyuk Y.M. Stochastic evolution system with Markov-modulated Poisson perturbations in the averaging schema. Mat. Stud. 2024. Vol. 62, N 1. P. 102–108. https://doi.org/10.30970/.

  • 8. Korolyuk V.S., Korolyuk V.V. Stochastic models of systems. Dordrecht: Springer, 1999. 185 p. https://doi.org/10.1007/.

  • 9. Korolyuk V.S., Limnios N. Stochastic systems in merging phase space. World Scientific, 2005. 348 p. https://doi.org/10.1142/.

  • 10. Ozekici S., Soyer R. Semi-Markov modulated Poisson process: probabilistic and statistical analysis. Math. Meth. Oper. Res. 2006. Vol. 64, Iss. 1. P. 125–144. https://doi.org/10.1007/ .

  • 11. Skorokhod A.V., Hoppensteadt F.C., Salehi H. Random perturbation method with application in science and engineering. New York: Springer New York, 2002. 490 p. https://doi.org/ 10.1007/.

  • 12. Koroliouk D., Samoilenko I. Asymptotic and analytic methods in stochastic evolutionary symptoms. John Wiley & Sons, 2023. 234 p. https://doi.org/10.1002/.

  • 13. Kushner H.J. Weak convergence methods and singular perturbed stochastic control and filtering problems. Boston: Birkhuser, 1990. XVIII, 234 p. https://doi.org/10.1007/.

  • 14. Samoilenko A.M., Stanzhytskyi O.M. Qualitative and asymptotic analysis of differential equations with random perturbations. Singapore: World Scientific, 2011. 324 p. https://doi.org/10.1142/.

  • 15. Semenyuk S.A., Chabanyuk Y.M. Fluctuations of a stochastic system under an asymptotic diffusive perturbation. Cybernetics and Systems Analysis. 2008. Vol. 44, N 5. P. 716–721. https://doi.org/10.1007/.

  • 16. Chabanyuk Y., Nikitin A., Khimka U. Asymptotic analyses for complex evolutionary systems with Markov and semi-Markov switching using approximation schemes. Mathematics and Statistics. John Wiley & Sons, 2020. 217 p. https://doi.org/10.1002/.




© 2025 Kibernetika.org. All rights reserved.