DOI
10.34229/KCA2522-9664.25.3.15
UDC 621.391
1 Ivan Kozhedub Kharkiv National Air Force University, Kharkiv, Ukraine
kpyu@ukr.net
|
2 Ivan Kozhedub Kharkiv National Air Force University, Kharkiv, Ukraine
kohafish@ukr.net
|
3 Ivan Kozhedub Kharkiv National Air Force University, Kharkiv, Ukraine
sloval@i.ua
|
4 Ivan Kozhedub Kharkiv National Air Force University, Kharkiv, Ukraine
rkacajlo@gmail.com
|
CLASSIFICATION OF SIGNALS WITH DIGITAL PARAMETER MODULATION
USING SG-STATISTICS
Abstract. The paper deals with the classification of signals with amplitude and phase manipulation of their parameters when observed against the background of additive Gaussian noise. It is shown that the use of non-parametric SG-statistics as an index of predictability allows for the classification of signals and their distinction within each class. A scale of signals according to their predictability index is proposed, which ranks signals according to their complexity.
Keywords: predictability index, signal classification, amplitude and phase modulation.
full text
REFERENCES
- 1. Rembovsky A.M., Ashikhmin A.V., Kozmin V.A. Radio Monitoring: Tasks, Methods, Tools. 4th ed. corrected [in Russian]. Moscow: Goryachaya Liniya – Telecom, 2015. 640 c.
- 2. Perunov Yu.M., Kupriyanov A.I. Methods and techniques of electronic warfare [in Russian]. Moscow: Infra-Engineering, 2021. 376 p.
- 3. Sergienko A.B. Digital Communications [in Russian]. SPb: ETU "LETI", 2012. 164 p.
- 4. Shermeh A.E., Ghazalian R. Recognition of communication signal types using genetic algorithm and support vector machines based on the higher order statistics. Digital Signal. Proc. 2010. Vol. 20, N 6. P. 1748–1757. https://doi.org/10.1016/.
- 5. Hossen A., Al-Wadahi F., Jervase J.A. Classification of modulation signals using statistical signal characterization and artificial neural networks. Engineering Applications of Artificial Intelligence. 2007. Vol. 20, N 4. P. 463–472. https://doi.org/10.1016/.
- 6. Hassan K., Dayoub I., Hamouda W., Berbineau M. Automatic modulation recognition using wavelet transform and neural networks in wireless systems. EURASIP J. Adv. Signal Process. 2010. Vol. 2010, N 1. Article number 532898. https://doi.org/10.1155/.
- 7. Velampalli C. Hierarchical blind modulation classification in the presence of carrier frequency offset. Master’s Thesis. Hyderabad: Communications Research Center, 2010. P. 1–39.
- 8. Su W., Kosinski J.A. Higher-order blind signal feature separation: An enabling technology for battlefield awareness. U. S. Army CECOM Research Development and Engineering Center, 2006. 7 p.
- 9. Kozminchuk B.W., Huang X. Joint blind synchronization of M-PSK and M-QAM signals. Defense Research Establishment. Ottawa, 1996. 13 p.
- 10. Boiteau D., Le Martret C. Combinaison de moments d’ordre 2 et 4 pour la classification de modulations linБaires. Seizieme Colloque GRETSI. 1997. Р. 981–984.
- 11. Swami A., Sadler B.M. Hierarchical digital modulation classification using cumulants. IEEE Transactions on Communications. 2000. Vol. 48, N. 3. P. 416–429. https://doi.org/10.1109/ 26.837045.
- 12. Li J., Wang J., Fan X., and Zhang Y. Automatic digital modulation recognition using feature subset selection. PIERS Proceedings (March 24–28, 2008, Hangzhou, China). 2008. Part 1. P. 351–354.
- 13. Kurbanaliev V. K. Cumulative signs for determining the type of signal manipulation. Radio electronics. Nanosystems. Information technologies. 2020. Vol. 12, N 3. P. 319–328. https://doi.org/10.17725/.
- 14. Nagornyuk O.A. Using cumulative analysis for recognition of radio signals of digital telecommunication systems. Systemy obrobky informatsiyi. 2018. N 2(153). P. 136–143. https://doi.org/10.30748/.
- 15. Nagornyuk O.A., Pysarchuk O.O., Manoilov V.P. A method of automated recognition of the type of digital linear modulation based on cumulative signal analysis. Bulletin of the ZhDTU. Ser. "Technical Sciences" 2013. Vol. 2 (65). P. 67–76. https://doi.org/10.26642.
- 16. Gaikwad C.J., Samdani H.K., Sircar P. Signal parameter estimation using fourth order statistics: multiplicative and additive noise environment. SpringerPlus. 2015. Vol. 4, Article number 291. https://doi.org/10.1186/.
- 17. Savit R., Green M.. Time series and dependent variables. Physica D: Nonlinear Phenomena. 1991. Vol. 50, N 1. P. 95–116. https://doi.org/10.1016/.
- 18. Kostenko P.Yu., Slobodyanyuk V.V., Alyonkin M.I., Shapovalov O.V. Application of the predictability index to estimate the signal delay time under conditions of multiplicative interference with unknown probability distribution density. Collection of scientific papers of the Kharkiv National University of the Air Force. 2024. Т 1(79). З. 52–59. https://doi.org/10.30748/.
- 19. Guven G. Testing equality of means in one-way ANOVA using three and four moment approximations. Communications Faculty of Sciences University of Ankara. Ser. A1 Mathematics and Statistics. 2023. Vol. 72, N 3. P. 587–605. https://doi.org/10.31801/.