DOI
10.34229/KCA2522-9664.25.4.12
UDC 004.056.5
1 V.N. Karazin Kharkiv National University; Joint Stock Company "Institute of Information Technologies," Kharkiv
i.d.gorbenko@karazin.ua
|
2 V.N. Karazin Kharkiv National University; Joint Stock Company "Institute of Information Technologies," Kharkiv, Ukraine
sergeykandy@gmail.com
|
National and international post-quantum standards
for asymmetric transformations
Abstract. The article analyzes the current state and prospects of the standardization of post-quantum algorithms for asymmetric cryptographic transformations at the national and international levels. The main reasons for the transition to post-quantum cryptography are discussed, particularly the potential threats posed by quantum computers to existing cryptographic algorithms (RSA, ECC, etc.). An overview of the NIST competition for selecting standards for post-quantum key encapsulation mechanisms (KEM) and electronic signatures is provided, with detailed descriptions of the algorithms chosen for standardization (CRYSTALS-Kyber, CRYSTALS-Dilithium, FALCON, SPHINCS+, and HQC). Additionally, the article examines the role of ISO/IEC, ETSI, and IETF in developing international standards and recommendations. Special attention is given to Ukrainian national standards and initiatives, particularly the algorithms “Skelya” and “Vershyna,” their features, and their prospects for integration into international standards. The article emphasizes the importance and complexity of transitioning to quantum-resistant algorithms and outlines further steps for the successful implementation of post-quantum cryptography.
Keywords: post-quantum cryptography, key encapsulation mechanisms, electronic signatures, standardization.
full text
REFERENCES
- 1. Post-quantum cryptography. URL: https://csrc.nist.gov/projects/post-quantum-cryptography (Last accessed: 30.03.2025).
- 2. Buchmann J.A. Introduction to quantum algorithms. Providence: American Mathematical Society, 2024. 371 p. URL: https://www.amazon.com/Introduction-Quantum-Algorithms.
- 3. Module-lattice-based key-encapsulation mechanism standard. Washington, D.C: U.S. Dept. of Commerce, 2024. 56 p. URL: https://nvlpubs.nist.gov/nistpubs/fips/nist.fips.203.pdf.
- 4. Module-lattice-based digital signature standard. Washington, D.C: U.S. Dept. of Commerce, 2024. 65 p. URL: https://nvlpubs.nist.gov/nistpubs/fips/nist.fips.204.pdf.
- 5. FIPS 205 Stateless hash-based digital signature standard. URL: https://csrc.nist.gov/pubs/fips/205/final (Last accessed: 30.03.2025).
- 6. NIST releases first 3 finalized post-quantum encryption standards. URL: https://www.nist.gov/ (Last accessed: 30.03.2025).
- 7. Quantum in context: IBM key to new NIST post-quantum crypto standards. URL: https://futurumgroup.com/insights/quantum-in-context-ibm-key-to-new-nist-post-quantum-crypto-standards/ (Last accessed: 30.03.2025).
- 8. NIST selects HQC as fifth algorithm for post-quantum encryption. URL: https://www.nist gov/news-events/news/2025/03/nist-selects-hqc-fifth-algorithm-post-quantum-encryption. (Last accessed: 30.03.2025).
- 9. Open Quantum Safe. URL: https://openquantumsafe.org/ (Last accessed: 30.03.2025).
- 10. LibreSSL. URL: https://www.libressl.org/ (Last accessed: 30.03.2025).
- 11. BoringSSL. URL: https://boringssl.googlesource.com/boringssl (Last accessed: 30.03.2025).
- 12. Amadori A. et al. The PQC migration handbook: Guidelines for migrating to post-quantum cryptography. AIVD, CWI, TNO. 2024. 117 p. URL: https://publications.tno.nl/publication/ .
- 13. XMSS: eXtended Merkle Signature Scheme. URL: https://datatracker.ietf.org/doc/html/(Last accessed: 30.03.2025).
- 14. Leighton-Micali hash-based signatures. URL: https://www.rfc-editor.org/rfc/rfc8554 (Last accessed: 30.03.2025).
- 15. NIST SP 800-208 Recommendation for stateful hash-based signature schemes. URL: https://csrc.nist.gov/pubs/sp/800/208/final (Last accessed: 30.03.2025).
- 16. ISO/IEC 14888-4:2024 Information security — Digital signatures with appendix. Part 4: Stateful hash-based mechanisms. URL: https://www.iso.org/standard/80492.html (Last accessed: 30.03.2025).
- 17. Post-quantum cryptography: Hash-based signatures. URL: https://www.redhat.com/en/blog/ (Last accessed: 30.03.2025).
- 18. ISO/IEC 18033-1:2021 Information security — Encryption algorithms. Part 1: General. URL: https://www.iso.org/standard/76156.html (Last accessed: 30.03.2025).
- 19. Brough J. Post-quantum cryptography status & outlook. Global Platform, Cybersecurity Vehicle Forum November 14th, 2023. URL: https://globalplatform.org/wp-content/uploads/2023/12/2.-Dr-Julian- (Last accessed: 30.03.2025).
- 20. ETSI TR 103 616 V1.1.1 (2021-09). CYBER; Quantum-safe signatures. Technical report. ETSI, 2021. URL: https://www.etsi.org/deliver/etsi_tr/103600_103699/.
- 21. ETSI TR 103 823 V1.1.1 (2021-09). CYBER; Quantum-safe public-key encryption and key encapsulation. Technical report. ETSI, 2021. URL: https://www.etsi.org/deliver/.
- 22. ETSI TS 104 015 V1.1.1 (2025-02). Cyber Security (CYBER); Quantum-safe cryptography (QSC); Efficient quantum-safe hybrid key exchanges with hidden access policies. Technical report. ETSI, 2025. URL: https://www.etsi.org/deliver/etsi_ts/104000_104099/104015/ .
- 22. ETSI TS 104 015 V1.1.1 (2025-02). Cyber Security (CYBER); Quantum-safe cryptography (QSC); Efficient quantum-safe hybrid key exchanges with hidden access policies. Technical report. ETSI, 2025. URL: https://www.etsi.org/deliver/etsi_ts/104000_104099/104015/ .
- 23. On the decision of the National Security and Defense Council of Ukraine dated October 22, 2021 “On the Concept of Reforming the State Service of Special Communications and Information Protection of Ukraine”: Decree of the President of Ukraine dated October 22, 2021 No. 544/2021. Kyiv: Official web portal of the Verkhovna Rada of Ukraine. URL: https://zakon.rada.gov.ua/laws/show/544/2021#Text.
- 24. DSTU 7624:2014 Information technologies. Cryptographic information protection. Symmetric block transformation algorithm. Amendment. Ministry of Economic Development of Ukraine, 2015. URL: https://online.budstandart.com/ua/catalog/doc-page.html.
- 25. DSTU 7564:2014 Information technologies. Cryptographic protection of information. Hash function. As amended. Ministry of Economic Development of Ukraine, 2015. URL: https://online.budstandart.com/ua/catalog/doc-page.html?id_doc=66229.
- 26. DSTU 8845:2019 Information technologies. Cryptographic protection of information. Symmetric stream transformation algorithm. Ministry of Economic Development of Ukraine, 2020.URL: https://online.budstandart.com/ua/catalog/doc-page?id_doc=82494.
- 27. DSTU 8961:2019 Information technologies. Cryptographic information protection. Asymmetric encryption and key encapsulation algorithms. Ministry of Economic Development of Ukraine, 2020. URL: https://online.budstandart.com/ua//catalog/doc-page.html?id_doc=.
- 28. Gorbenko I.D., Yesina M.V., Kandy S.O., Ostryanska Ye.V. Generation of general system parameters for Falcon cryptosystem for 256, 384, and 512 security bits. Telecommunications and Radio Engineering. 2022. Vol. 81, Iss. 2. P. 49–59. https://doi.org/10.1615/ TelecomRadEng.2022037071.
- 29. Potii O.V., Kachko O.G., Kandii S.O., Kaptol Y.Y. Determining the effect of a floating point on the Falcon digital signature algorithm security. Eastern–European Journal of Enterprise Technologies. 2024. Vol. 1, N 9. P. 52–59. https://doi.org/10.15587/1729-4061.2024.295160.
- 30. Kachko O.G., Gorbenko Y.I., Kandii S.O., Kaptol Y.Y. Improving protection of falcon electronic signature software implementations against attacks based on floating point noise. Eastern–European Journal of Enterprise Technologies. 2024. Vol. 4, N 9. P. 6–17. https://doi.org/10.15587/1729-4061.2024.310521.
- 31. Gorbenko Yu.I., Kandii S.O. Comparison of security arguments of promising key encapsulation mechanisms. Radiotekhnika. 2022. N 210. P. 22–36. https://doi.org/10.30837/rt.2022.3.210.02.
- 32. Kandiy S.О. Analysis of DSTU 8961:2019 in random oracle model. Radiotekhnika. 2022. N 211. P. 22–36. https://doi.org/10.30837/rt.2022.4.211.02.
- 33. Ostrianska Ye.V., Kandiy S.O., Gorbenko I.D., Yesina M.V. Classification and analysis of vulnerabilities of modern information systems from classical and quantum attacks. Radiotekhnika. 2022. N 211. P. 7–21. https://doi.org/10.30837/rt.2022.4.211.01.
- 34. Kandiy S.О. Security analysis of promising key encapsulation mechanisms in the core–SVP model. Radiotekhnika. 2023. N 212. P. 66–84. https://doi.org/10.30837/rt.2023.1.212.06.
- 35. Kandii S.O., Gorbenko I.D. Analysis of DSTU 8961:2019 in the quantum random oracle model. Radiotekhnika. 2023. N 214. P. 7–16. https://doi.org/10.30837/rt.2023.3.214.01.
- 36. Kandii S.O., Gorbenko I.D. Refining security assessments of quantum-resistant asymmetric encryption standards taking into account the structure of q-ary lattices. Radiotekhnika. 2024. N 218. P. 76–92. https://doi.org/10.30837/rt.2024.3.218.06.
- 37. Kandii S.O., Gorbenko I.D. Assessing the influence of the algebraic structure of -ary lattices on the complexity of cryptanalysis of problems on lattices. Radiotekhnika. 2024. N 217. P. 79–99. https://doi.org/10.30837/rt.2024.2.217.07.
- 38. Saber: LWR-based KEM. URL: https://www.esat.kuleuven.be/cosic/pqcrypto/saber/.
- 39. NTRU. A submission to the NIST post-quantum standardization effort. URL: https://ntru.org/.
- 40. FrodoKEM. Practical quantum-secure key encapsulation from generic lattices. URL: https://frodokem.org/.
- 41. Classic McEliece. URL: https://classic.mceliece.org/.
- 42. BIKE — Bit flipping key encapsulation. URL: https://bikesuite.org/.
- 43. Rainbow signature. One of the three NIST post-quantum signature finalists. URL: www.pqcrainbow.org/.
- 44. Picnic. A family of post-quantum secure digital signature algorithms. URL: https://microsoft.github.io/Picnic/.
- 45. SIKE – Supersingular isogeny key encapsulation. URL: https://sike.org/2025.