Cybernetics And Systems Analysis logo
Editorial Board Announcements Abstracts Authors Archive
KIBERNETYKA TA SYSTEMNYI ANALIZ
International Theoretical Science Journal
-->


DOI 10.34229/KCA2522-9664.25.4.13
UDC 003.26:621.39+530.145
Ye. Vasiliu1


1 State University of Intelligent Technologies and Telecommunications, Odesa, Ukraine

ye.vasiliu@gmail.com

Modern quantum technologies of cryptographic information protection

Abstract. Quantum cryptography is a new paradigm of cryptographic information protection, utilizing the laws of quantum mechanics and the corresponding quantum properties of information carriers — photons to overcome the limitations of classical cryptographic protocols and increase the security of cryptographic protocols up to the information-theoretic level. The paper provides a general overview and analysis of modern quantum information security technologies, particularly protocols for quantum key distribution, quantum secure direct communication, and quantum secret sharing. Several other areas of quantum cryptography are briefly considered, such as quantum digital signature, quantum bit commitment, quantum steganography, etc. The advantages and disadvantages of quantum cryptographic protocols, as well as the prospects and challenges of their practical implementation, are analyzed. A brief overview of the laws of quantum physics underlying the security of quantum cryptographic protocols is also provided.

Keywords: quantum cryptography, physical foundations of quantum cryptography, qubit, qudit, entangled qubits and qudits, quantum key distribution, quantum secure direct communication, quantum secret sharing.


full text

REFERENCES

  • 1. Shor P. Algorithms for quantum computation: Discrete logarithms and factoring. Proc. 35th Annual Symposium on Foundations of Computer Science (FOCS) (20–22 November 1994, Santa Fe, NM, USA). Santa Fe, 1994. P. 124–134. https://doi.org/10.1109/SFCS.1994.365700.

  • 2. Bennett C., Brassard G. Quantum cryptography: Public key distribution and coin tossing. Proc. IEEE International Conference on Computers, Systems, and Signal Processing (9–12 December 1984, Bangalore, India). Bangalore, 1984. P. 175–179.

  • 3. Gisin N., Ribordy G., Tittel W., Zbinden H. Quantum cryptography. Review Modern Physics. 2002. Vol. 74, Iss. 1. Article number 145. https://doi.org/10.1103/RevModPhys.74.145.

  • 4. Kollmitzer C., Pivk M. (Eds.). Applied quantum cryptography. Berlin; Heidelberg: Springer-Verlag, 2010. 227 p. https://doi.org/10.1007/978-3-642-04831-9.

  • 5. Pirandola S. et al. Advances in quantum cryptography. Advances in Optics and Photonics. 2020. Vol. 12, Iss. 4. P. 1012–1236. https://doi.org/10.1364/AOP.361502.

  • 6. Peev M. et al. The SECOQC quantum key distribution network in Vienna. New Journal of Physics. 2009. Vol. 11, Iss. 7. Article number 075001. https://doi.org/10.1088/1367-2630/11/7/075001.

  • 7. Brito S., Canabarro A., Cavalcanti D., Chaves R. Satellite-based photonic quantum networks are small-world. PRX Quantum. 2021. Vol. 2, Iss. 1. Article number 010304. https://doi.org/ 10.1103/PRXQuantum.2.010304.

  • 8. de Forges de Parny L. et al. Satellite-based quantum information networks: use cases, architecture, and roadmap. Communications Physics. 2023. Vol. 6. Article number 12. https://doi.org/10.1038/s42005-022-01123-7.

  • 9. Stanley M., Gui Y., Unnikrishnan D., Hall S.R.G., Fatadin I. Recent progress in quantum key distribution network deployments and standards. Journal of Physics: Conference Series. 2022. Vol. 2416. Article number 012001. https://doi.org/10.1088/1742-6596/2416/1/012001.

  • 10. van Deventer O. et al. Towards European standards for quantum technologies. EPJ Quantum Technology. 2022. Vol 9. Article number 33. https://doi.org/10.1140/epjqt/s40507-022-00150-1.

  • 11. R. Alléaume et al. Worldwide standardization activity for quantum key distribution. 2014 IEEE Globecom Workshops (GC Wkshps) (08–12 December 2014, Austin, TX, USA). Austin, 2014. P. 656–661. https://doi.org/10.1109/GLOCOMW.2014.7063507.

  • 12. Briegel H.J., Dr W., Cirac J.I., Zoller P. Quantum repeaters: The role of imperfect local operations in quantum communication. Physical Review Letters. 1998. Vol. 81, Iss. 26. P. 5932–5935. https://doi.org/10.1103/PhysRevLett.81.5932.

  • 13. Bouwmeester D., Ekert A., Zeilinger A. The physics of quantum information: Quantum cryptography, quantum teleportation, quantum computation. Berlin: Springer, 2000. 315 p. https://doi.org//10.1007/978-3-662-04209-0.

  • 14. Bostrm K., Felbinger T. Deterministic secure direct communication using entanglement. Physical Review Letters. 2002. Vol. 89, Iss. 18. Article number 187902. https://doi.org/10.1103/PhysRevLett.89.187902.

  • 15. Zawadzki P., Miszczak J.A. A general scheme for information interception in the ping-pong protocol. Advances in Mathematical Physics. 2016. Article number 3162012. https://doi.org/10.1155//2016/3162012.

  • 16. Farman F., Tofighi S., Bahrampour A. Ping-pong protocol based on the orbital angular momentum of light. Journal of the Optical Society of America B. 2018. Vol. 35, Iss. 10. P. 2348–2355. https://doi.org/10.1364/JOSAB.35.002348.

  • 17. Ostermeyer M., Walenta N. On the implementation of a deterministic secure coding protocol using polarization entangled photons. Optics Communications. 2008. Vol. 281, Iss. 17. P. 4540–4544. https://doi.org/10.1016/j.optcom.2008.04.068.

  • 18. M. How secure are two-way ping-pong and LM05 QKD protocols under a man-in- the-middle attack? Entropy. 2021. Vol. 23, Iss. 2. Article number 163. https://doi.org/10.3390/e23020163.

  • 19. Vasiliu Y., Nikolayenko S. Modified method of security amplification for quantum direct communication protocols. Proc. 2014 First International Scientific-Practical Conference Problems of Infocommunications Science and Technology (14–17 October 2014, Kharkiv, Ukraine). Kharkiv, 2014. P. 190–191. https://doi.org/10.1109/INFOCOMMST.2014.6992348.

  • 20. Korchenko O., Vasiliu Y., Gnatyuk S. Modern quantum technologies of information security against cyber-terrorist attacks. Aviation. 2010. Vol. 14, Iss. 2. P. 58–69. https://doi.org/10.3846/aviation.2010.10.

  • 21. Scarani V., Bechmann-Pasquinucci H., Cerf N.J., M., Ltkenhaus N., Peev M. The security of practical quantum key distribution. Review of Modern Physics. 2009. Vol. 81, Iss. 3. P. 1301–1350. https://doi.org/10.1103/RevModPhys.81.1301.

  • 22. Zhmurko T., Kinzeryavyy V., Yubuzova Kh., Stojanovic A. Generalized classification of modern quantum cryptography and communication methods. Ukrainian Scientific Journal of Information Security. 2015. Vol. 22, Iss. 3. P. 287–293. https://doi.org/10.18372/2225-5036.21.9706.

  • 23. Li J., Li N., Zhang Y., Wen S., Du W., Chen W., Ma W. A survey on quantum cryptography. Chinese Journal of Electronics. 2018. Vol. 27, Iss. 2. P. 223–228. https://dx.doi.org/10.1049/cje.2018.01.017.

  • 24. Cerf N.J., Bourennane M., Karlsson A., Gisin N. Security of quantum key distribution using d-level systems. Physical Review Letters. 2002. Vol. 88, Iss. 12. Article number 127902. https://doi.org/10.1103/PhysRevLett.88.127902.

  • 25. Bourennane M., Karlsson A., Bjork G. Quantum key distribution using multilevel encoding. In: Quantum Communication, Computing, and Measurement 3. Tombesi P., Hirota O. (Eds.). Boston, MA: Springer, 2002. P. 295–298. https://doi.org/10.1007/0-306-47114-0_46.

  • 26. Vasiliu E.V., Mamedov R.S. Comparative analysis of security and efficiency of quantum key distribution protocols with qudits. Proc. International Conference on IT Promotion in Asia ’2009 (21–25 September 2009, Tashkent, Uzbekistan). Tashkent, 2009. P. 200–203.

  • 27. Ekert A.K. Quantum cryptography based on Bell’s theorem. Physical Review Letters. 1991. Vol. 67, Iss. 6. P. 661–663. https://doi.org/10.1103/PhysRevLett.67.661.

  • 28. Durt T., Kaszlikowski D., Chen J.-L., Kwek L.C. Security of quantum key distributions with entangled qudits. Physical Review A. 2004. Vol. 69, Iss. 3. Article number 032313. https://doi.org/10.1103/PhysRevA.69.032313.

  • 29. Weedbrook C., Pirandola S., GarcЗa-PatrЛn R., Cerf N.J., Ralph T.C., Shapiro J.H., Lloyd S. Gaussian quantum information. Review of Modern Physics. 2012. Vol. 84, Iss. 2. P. 621–669. https://doi.org/10.1103/RevModPhys.84.621.

  • 30. Grosshans F., Grangier P. Continuous variable quantum cryptography using coherent states. Physical Review Letters. 2002. Vol. 88, Iss. 5. Article number 057902. https://doi.org/10.1103/PhysRevLett.88.057902.

  • 31. Pirandola S., Ottaviani C., Spedalieri G., Weedbrook C., Braunstein S.L., Lloyd S., Gehring T., Jacobsen C.S., Andersen U.L. High-rate measurement-device-independent quantum cryptography. Nature Photonics. 2015. Vol. 9. P. 397–402. https://doi.org/10.1038/nphoton.2015.83.

  • 32. Hu L., Al-Amri M., Liao Z., Zubairy M.S. Continuous-variable quantum key distribution with non-Gaussian operations. Physical Review A. 2020. Vol. 102, Iss. 1. Article number 012608. https://doi.org/10.1103/PhysRevA.102.012608.

  • 33. Huang D., Huang P., Lin D., Wang C., Zeng G. High-speed continuous-variable quantum key distribution without sending a local oscillator. Optics Letters. 2015. Vol. 40, Iss. 16. P. 3695–3698. https://doi.org/10.1364/OL.40.003695.

  • 34. Zhang Y. et al. Long-distance continuous-variable quantum key distribution over 202.81 km of fiber. Physical Review Letters. 2020. Vol. 125, Iss. 1. Article number 010502. https://doi.org/10.1103/PhysRevLett.125.010502.

  • 35. Hosseinidehaj N., Babar Z., Malaney R., Ng S.X., Hanzo L. Satellite-based continuous-variable quantum communications: State-of-the-art and a predictive outlook. IEEE Communications Surveys & Tutorials. 2019. Vol. 21, Iss. 1. P. 881–919. https://doi.org/10.1109/COMST.2018.2864557.

  • 36. Sulimany K., Pelc G., Dudkiewicz R., Korenblit S., Eisenberg H.S., Bromberg Y., Ben-Or M. High-dimensional coherent one-way quantum key distribution. NPJ Quantum Information. 2025. Vol. 11. Article number 16. https://doi.org/10.1038/s41534-025-00965-7.

  • 37. Azuma K., Economou S.E., Elkouss D., Hilaire P., Jiang L., Lo H.-K., Tzitrin I. Quantum repeaters: From quantum networks to the quantum internet. Review Modern Physics. 2023. Vol. 95, Iss. 4. Article number 045006. https://doi.org/10.1103/RevModPhys.95.045006.

  • 38. Yin J. et al. Satellite-based entanglement distribution over 1,200 kilometers. Science. 2017. Vol. 356, Iss. 6339. P. 1140–1144. https://doi.org/10.1126/science.aan3211.

  • 39. Han Y.G., Yin Z.Q., Li H.W. et al. Security of modified ping-pong protocol in noisy and lossy channel. Scientific Reports. 2014. Vol. 4. Article number 4936. https://doi.org/10.1038/srep04936.

  • 40. Vasiliu E.V. Non-coherent attack on the ping-pong protocol with completely entangled pairs of qutrits. Quantum Information Processing. 2011. Vol. 10. P. 189–202. https://doi.org/10.1007/s11128-010-0188-8.

  • 41. Zawadzki P. Improving security of the ping-pong protocol. Quantum Information Processing. 2013. Vol. 12. P. 149–155. https://doi.org/10.1007/s11128-012-0363-1.

  • 42. Kaur H., Kumar A. Game-theoretic perspective of ping-pong protocol. Physica A: Statistical Mechanics and its Applications. 2018. Vol. 490. P. 1415–1422. https://doi.org/10.1016/j.physa.2017.09.019.

  • 43. Yang Y.G., Teng Y.W., Chai H.P. et al. Revisiting the security of secure direct communication based on ping-pong protocol. Quantum Information Processing. 2011. Vol. 10. P. 317–323. https://doi.org/10.1007/s11128-010-0199-5.

  • 44. Kaur H., Kumar A. An improved ping-pong protocol using three-qubit nonmaximally nonorthogonal entangled states. Zeitschrift für Naturforschung A. 2019. Vol. 74, Iss. 9. P. 799-811. https://doi.org/10.1515/zna-2018-0448.

  • 45. Baranovsky О.K., Gorbadey О.Y., Zenevich A.O., Vasiliu Ye.V. Quantum method of secure key distribution in optical fiber communication lines. Proc. 2017 International Conference on Information and Telecommunication Technologies and Radio Electronics (UkrMiCo) (11–15 September 2017, Odessa, Ukraine). Odessa, 2017. P. 1–4. https://doi.org/10.1109/UkrMiCo.2017.8095366.

  • 46. Jensen K.S., Valentini L., Christensen R.B., Chiani M., Popovski P. Quantum two-way protocol beyond superdense coding: Joint transfer of data and entanglement. IEEE Transactions on Quantum Engineering. 2025. Vol. 6. Article number 4100408. https://doi.org/10.1109/TQE.2025.3528238.

  • 47. Shaari J.S., Mancini S. Finite key size analysis of two way quantum cryptography. Entropy. 2015. Vol. 17, Iss. 5. P. 2723–2740. https://doi.org/10.3390/e17052723.

  • 48. Vasiliu Ye., Okhrimenko T., Fesenko A., Dorozhynskyy S. Passive eavesdropping attack of several intruders on deterministic protocol with pairs of entangled qubits. Proc. 2021 11th IEEE International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications (IDAACS) (22–25 September 2021, Cracow, Poland). Cracow, 2021. Vol. 1. P. 1068–1072. https://doi.org/10.1109/IDAACS53288.2021.9660851.

  • 49. Pirandola S., Mancini S., Lloyd S., Braunstein S.L. Continuous-variable quantum cryptography using two-way quantum communication. Nature Physics. 2008. Vol. 4. P. 726–730. https://doi.org/10.1038/nphys1018.

  • 50. Wang Ch., Deng F.-G., Li Y.-S., Liu X.-S. Long G.L. Quantum secure direct communication with high dimension quantum superdense coding. Physical Review A. 2005. Vol. 71, Iss. 4. Article number 044305. https://doi.org/10.1103/PhysRevA.71.044305.

  • 51. Liu L., Niu J.-L., Fan C.-R., Feng X.-T., Wang C. High-dimensional measurement-device-independent quantum secure direct communication. Quantum Information Processing. 2020. Vol. 19. Article number 404. https://doi.org/10.1007/s11128-020-02908-x.

  • 52. Zhang W., Ding D.-S., Sheng Y.-B., Zhou L., Shi B.-S., Guo G.-C. Quantum secure direct communication with quantum memory. Physical Review Letters. 2017. Vol. 118. Article number 220501. https://doi.org/10.1103/PhysRevLett.118.220501.

  • 53. Pan D., Song X.-T., Long G. Free-space quantum secure direct communication: Basics, progress, and outlook. Advanced Devices & Instrumentation. 2023. Vol. 4. Article number 0004. https://doi.org/10.34133/adi.0004.

  • 54. Qi R. et al. Implementation and security analysis of practical quantum secure direct communication. Light: Science and Applications. 2019. Vol. 8. Article number 22. https://doi.org/10.1038/s41377-019-0132-3.

  • 55. Zhang H., Sun Z., Qi R., Yin L., Long G.-L., Lu J. Realization of quantum secure direct communication over 100 km fiber with time-bin and phase quantum states. Light: Science and Applications. 2022. Vol. 11. Article number 83. https://doi.org/10.1038/s41377-022-00769-w.

  • 56. Hu J-Y., Yu B., Jing M.-Y., Xiao L.-T., Jia S.-T., Qin G.-Q., Long G.-L. Experimental quantum secure direct communication with single photons. Light: Science and Applications. 2016. Vol. 8. Article number e16144. https://doi.org/10.1038/lsa.2016.144.

  • 57. Lucamarini M., Mancini S. Secure deterministic communication without entanglement. Physical Review Letters. 2005. Vol. 94. Article number 140501. https://doi.org/10.1103/PhysRevLett.94.140501.

  • 58. Zawadzki P. Advances in quantum secure direct communication. IET Quantum Communication. 2021. Vol. 2, Iss. 2. P. 54–62. https://doi.org/10.1049/qtc2.12009.

  • 59. Jin X.-R., Ji X., Zhang Y.-Q., Zhang S., Hong S.-K., Yeon K.-H., Um C.-I. Three-party quantum secure direct communication based on GHZ states. Physics Letters A. 2006. Vol. 354, Iss. 1–2. P. 67–70. https://doi.org/10.1016/j.physleta.2006.01.035.

  • 60. Xiu X.-M., Li D., Gao Y.-J. Secure four-site distribution and quantum communication of -type entangled states. Optics Communications. 2011. Vol. 284, Iss. 7. P. 2065–2069. https://doi.org/10.1016/j.optcom.2010.11.084.

  • 61. Chen S.-S., Zhou L., Zhong W., Sheng Y.-B. Three-step three-party quantum secure direct communication. Science China Physics, Mechanics & Astronomy. 2018. Vol. 61. Article number 90312. https://doi.org/10.1007/s11433-018-9224-5.

  • 62. Zhou Y.H., Chen Z.-S., Yang Y.-G., Shi W.-M., Xu Y. Three-party quantum secure direct communication protocol with adaptive capacity. International Journal of Theoretical Physics. 2022. Vol. 61. Article number 54. https://doi.org/10.1007/s10773-022-05053-6.

  • 63. Zhang Z., Zhang L, Zhuge B., Ye B. Four-party deterministic quantum operation sharing with a generalized seven-qubit Brown state. Laser Physics Letters. 2021. Vol. 18, Iss. 5. Article number 055202. https://doi.org/10.1088/1612-202X/abf0aa.

  • 64. Korchenko O., Vorobiyenko P., Lutskiy M., Vasiliu Ye., Gnatyuk S. Quantum secure telecommunication systems. In: Telecommunications networks — current status and future trends. Ortiz J.H. (Ed.). InTech, 2012. P. 211–236. https://doi.org/10.5772/38832.

  • 65. Hillery M., V., Berthiaume A. Quantum secret sharing. Physical Review A. 1999. Vol. 59, Iss. 3. P. 1829–1834. https://doi.org/10.1103/PhysRevA.59.1829.

  • 66. Karlsson A., Koashi M., Imoto N. Quantum entanglement for secret sharing and secret splitting. Physical Review A. 1999. Vol. 59, Iss. 1. P. 162–168. https://doi.org/10.1103/PhysRevA.59.162.

  • 67. Xiao L., Long G.L., Deng F.G., Pan J.W. Efficient multiparty quantum-secret-sharing schemes. Physical Review A. 2004. Vol. 69, Iss. 5. Article number 052307. https://doi.org/10.1103/PhysRevA.69.052307.

  • 68. Zhang Z., Man Z. Multiparty quantum secret sharing of classical messages based on entanglement swapping. Physical Review A. 2005. Vol. 72, Iss. 2. Article number 022303. https://doi.org/10.1103/PhysRevA.72.022303.

  • 69. Hsu L.-Y. Quantum secret-sharing protocol based on Grover’s algorithm. Physical Review A. 2003. Vol. 68, Iss. 2. Article number 022306. https://doi.org/10.1103/PhysRevA.68.022306.

  • 70. Vasiliu Ye., Limar I., Gancarczyk T., Karpinski M. New quantum secret sharing protocol using entangled qutrits. Proc. 2019 10th IEEE International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications (IDAACS) (18–21 September 2019, Metz, France). Metz, 2019. Vol. 1. P. 324–329. https://doi.org/ 10.1109/IDAACS.2019.8924256.

  • 71. Lance A.M., Symul T., Bowen W.P., Sanders B.C., Tyc T., Ralph T.C., Lam P.K. Continuous-variable quantum-state sharing via quantum disentanglement. Physical Review A. 2005. Vol. 71, Iss. 3. Article number 033814. https://doi.org/10.1103/PhysRevA.71.033814.

  • 72. Liu S., Lu Z., Wang P., Tian Y., Wang X., Li Y. Experimental demonstration of multiparty quantum secret sharing and conference key agreement. NPJ Quantum Information. 2023. Vol. 9. Article number 92. https://doi.org/10.1038/s41534-023-00763-z.

  • 73. Qin Y., Cheng J., Ma J., Zhao D., Yan Z., Jia X., Xie C., Peng K. Efficient and secure quantum secret sharing for eight users. Physical Review Research. 2024. Vol. 6, Iss. 3. Article number 033036. https://doi.org/10.1103/PhysRevResearch.6.033036.

  • 74. Gottesman D. Theory of quantum secret sharing. Physical Review A. 2000. Vol. 61, Iss 4. Article number 042311. https://doi.org/10.1103/PhysRevA.61.042311.

  • 75. Zhang Z., Li Y., Man Z. Multiparty quantum secret sharing. Physical Review A. 2005. Vol. 71, Iss. 4. Article number 044301. https://doi.org/10.1103/PhysRevA.71.044301.

  • 76. Cai X.-Q., Li S., Liu Z.-F., Wang T.-Y. Improving security of efficient multiparty quantum secret sharing based on a novel structure and single qubits. Scientific Reports. 2024. Vol. 14. Article number 18385. https://doi.org/10.1038/s41598-024-69417-0.

  • 77. Tittel W. Zbinden H., Gisin N. Experimental demonstration of quantum secret sharing. Physical Review A. 2001. Vol. 63, Iss. 4. Article number 042301. https://doi.org/10.1103/ PhysRevA.63.042301.

  • 78. Shen A., Cao X.-Y., Wang Y., Fu Y., Gu J., Liu W.-B., Weng C.-X., Yin H.-L., Chen Z.-B. Experimental quantum secret sharing based on phase encoding of coherent states. Science China Physics, Mechanics & Astronomy. 2023. Vol. 66. Article number 260311. https://doi.org/10.1007/s11433-023-2105-7.

  • 79. Liu Z.-F. et al. Experimental demonstration of complete quantum information masking and generalization of quantum secret sharing. Communications Physics. 2025. Vol. 8. Article number 30. https://doi.org/10.1038/s42005-025-01942-4.

  • 80. Wallden P., Dunjko V., Kent A., Andersson E. Quantum digital signatures with quantum-key-distribution components. Physical Review A. 2015. Vol. 91, Iss. 4. Article number 042304. https://doi.org/10.1103/PhysRevA.91.042304.

  • 81. Li B.H., Xie Y.M., Cao X.Y., Li C.L., Fu Y., Yin H.L., Chen Z.B. One-time universal hashing quantum digital signatures without secret channels. Physical Review Applied. 2022. Vol. 20, Iss. 4. Article number 044011. https://doi.org/10.1103/PhysRevApplied.20.044011.

  • 82. Duan H. A research on quantum digital signatures. Applied and Computational Engineering. 2023. Vol. 15. P. 100–109. https://doi.org/10.54254/2755-2721/15/20230814.

  • 83. Du Y., Li B.-H., Hua X., Cao X.-Y., Zhao Z., Xie F., Zhang Z., Yin H.-L.,Xiao X., Wei K. Chip-integrated quantum signature network over 200 km. Light: Science & Applications. 2025. Vol. 14. Article number 108. https://doi.org/10.1038/s41377-025-01775-4.

  • 84. Lunghi T., Kaniewski J., BussiЩres F., Houlmann R., Tomamichel M., Kent A., Gisin N., Wehner S., Zbinden H. Experimental bit commitment based on quantum communication and special relativity. Physical Review Letters. 2013. Vol. 111, Iss. 18. Article number 180504. https://doi.org/10.1103/PhysRevLett.111.180504.

  • 85. Almeida ѕ.J., Loura R., Paunkovi N., Silva N.A., Muga N.J., Mateus P., AndrБ P.S., Pinto A.N. A brief review on quantum bit commitment. Proc. Second International Conference on Applications of Optics and Photonics (26–30 May 2014, Aveiro, Portugal). Aveiro, 2014. Vol. 9286. P. 189–196. https://doi.org/10.1117/12.2063733.

  • 86. Shaw B.A., Brun T.A. Quantum steganography with noisy quantum channels. Physical Review A. 2011. Vol. 83, Iss. 2. Article number 022310. https://doi.org/10.1103/PhysRevA.83.022310.

  • 87. Liu L., Tang G.-M., Sun Y.-F., Yan S.-F. Quantum steganography for multi-party covert communication. International Journal of Theoretical Physics. 2016. Vol. 55. P. 191–201. https://doi.org/10.1007/s10773-015-2649-4.

  • 88. Joshi R., Gupta A., Thapliyal K., Srikanth R., Pathak A. Hide and seek with quantum resources: new and modified protocols for quantum steganography. Quantum Information Processing. 2022. Vol. 21. Article number 164. https://doi.org/10.1007/s11128-022-03514-9.

  • 89. Yan F., Iliyasu A.M., Le P.Q. Quantum image processing: A review of advances in its security technologies. International Journal of Quantum Information. 2017. Vol. 15, Iss. 3. Article number 1730001. https://doi.org/10.1142/S0219749917300017.

  • 90. Agrawal A., Soni R., Tomar A. Perspective Chapter: Quantum steganography — encoding secrets in the quantum domain. In: Steganography — the art of hiding information. Mayer J. (Ed.). IntechOpen, 2024. 160 p. https://doi.org/10.5772/intechopen.1004597.

  • 91. Miller C.A. The mathematics of quantum coin-flipping. Notices of the American Mathematical Society. 2022. Vol. 69, N 11. P. 1908–1917. https://doi.org/10.1090/noti2575.

  • 92. Neves S., Yacoub V., Chabaud U., Bozzio M., Kerenidis I., Diamanti E. Experimental cheat-sensitive quantum weak coin flipping. Nature Communications. 2023. Vol. 14, Iss. 1. Article number 1855. https://doi.org/10.1038/s41467-023-37566-x.

  • 93. Pappa A., Jouguet P., Lawson T., Chailloux A., Legré M., Trinkler P., Kerenidis I., Diamanti E. Experimental plug and play quantum coin flipping. Nature Communications. 2014. Vol. 5. Article number 3717. https://doi.org/10.1038/ncomms4717.

  • 94. Berlèn G., Brassard G., Bussières F., Godbout N., Slater J.A., Tittel W. Experimental loss-tolerant quantum coin flipping. Nature Communications. 2011. Vol. 2. Article number 561. http://doi.org/10.1038/ncomms1572.

  • 95. Ma X., Yuan X., Cao Z., Qi B., Zhang Z. Quantum random number generation. NPJ Quantum Information. 2016. Vol. 2. Article number 16021. https://doi.org/10.1038/npjqi.2016.21.

  • 96. Moeini M., Akbari M., Mirsadeghi M., Naeij H.R., Haghkish N., Hayeri A., Malekian M. Quantum random number generator based on LED. Journal of Applied Physics. 2024. Vol. 135, Iss. 8. Article number 084402. https://doi.org/10.1063/5.0188208.

  • 97. Argillander J., Alarcón A., Bao C., Kuang C., Lima G., Gao F., Xavier G.B. Secure quantum random number generation with perovskite photonics. Proc. SPIE Quantum West (27 January – 1 February 2024, San Francisco, CA, United States). San Francisco, 2024. Vol. 12911. Article number 129111B. https://doi.org/10.1117/12.2692061.




© 2025 Kibernetika.org. All rights reserved.