DOI
10.34229/KCA2522-9664.25.5.6
UDC 517.9:519.6
V.M. Bulavatsky
V.M. Glushkov Institute of Cybernetics, National Academy of Sciences of Ukraine,
Kyiv, Ukraine,
v_bulav@ukr.net
V.O. Bohaienko
V.M. Glushkov Institute of Cybernetics, National Academy of Sciences of Ukraine,
Kyiv, Ukraine,
sevab@ukr.net
MATHEMATICAL MODELING OF FRACTIONAL-DIFFERENTIAL
DYNAMICS OF COMPUTER VIRUSES BASED ON A MODEL
WITH CAPUTO-DERIVATIVESOF PIECEWISE-CONSTANT ORDER
Abstract. A generalized fractional-differential analog with respect to the known models of the dynamics of the propagation of computer viruses, built using Caputo derivatives of piecewise-constant order, is considered. A combined technique for obtaining a numerical-analytical solution of the corresponding Cauchy problem for a nonlinear system of fractional-differential equations of piecewise-constant order has been developed. The results of qualitative analysis in relation to the conditions of correctness of this Cauchy problem, analysis of the problem’s stability according to Ulam–Hyers, and some results of computer modeling of the fractional dynamics of computer virus propagation based on this model of computer virology are presented.
Keywords: dynamics of computer virus spread, mathematical and computer modeling, fractional differential mathematical models, Caputo-derivatives of piecewise-constant order, nonlinear models, qualitative analysis, UH-stability.
full text
REFERENCES
- 1. Yang L.-X., Yang X. The effect of infected external computers on the spread of viruses: A compartment modeling study. Physica A: Statistical Mechanics and its Applications. 2013. Vol. 392, Iss. 24. P. 6523–6535. https://doi.org/10.1016/j.physa.2013.08.024.
- 2. Piqueira J.R.C., Araujo V.O. A modified epidemiological model for computer viruses. Applied Mathematics and Computation. 2009. Vol. 213, Iss. 2. P. 355–360. https://doi.org/10.1016/j.amc.2009.03.023.
- 3. Ren J., Yang X., Yang L.-X., Xu Y., Yang F. A delayed computer virus propagation model and its dynamics. Chaos, Solitons & Fractals. 2012. Vol. 45, Iss. 1. P. 74–79. https://doi.org/10.1016/j.chaos.2011.10.003.
- 4. Ren J., Yang X., Zhu Q., Yang L.-X., Zhang C. A novel computer virus model and its dynamics. Nonlinear Analysis: Real World Applications. 2012. Vol. 13, Iss. 1. P. 376–384. https://doi.org/10.1016/j.nonrwa.2011.07.048.
- 5. Piqueira J.R.C., Navarro B.F., Monteiro L.H.A. Epidemiological models applied to viruses in computer networks. Journal of Computer Science. 2005. Vol. 1, N 1. P. 31–34. https://doi.org/10.3844/jcssp.2005.31.34.
- 6. Han X., Tan Q. Dynamical behavior of computer virus on Internet. Applied Mathematics and Computation. 2010. Vol. 217, Iss. 6. P. 2520–2526. https://doi.org/10.1016/j.amc.2010.07.064.
- 7. Gan C., Yang X., Zhu Q. Propagation of computer virus under the influences of infected external computers and removable storage media. Modeling and analysis. Nonlinear Dynamics. 2014. Vol. 78, N 2. P. 1349–1356. https://doi.org/10.1007/s11071-014-1521-z.
- 8. Gan C., Yang X., Liu W., Zhu Q. A propagation model of computer virus with nonlinear vaccination probability. Commun. Nonlinear Sci. Numer. Simulat. 2014. Vol. 19, Iss. 1. P. 92–100. https://doi.org/10.1016/j.cnsns.2013.06.018.
- 9. Yang L.-H., Yang X., Liu J., Zhu Q., Gan C. Epidemics of computer viruses: A complex-network approach. Applied Mathem. and Comput. 2013. Vol. 219, Iss. 16. P. 8705–8717. https://doi.org/10.1016/j.amc.2013.02.031.
- 10. Zhu Q., Yang X., Yang L.-H., Zhang X. A mixing propagation model of computer viruses and countermeasures. Nonlinear Dynamics. 2013. Vol. 73, N 3. P. 1433–1441. https://doi.org/10.1007/s11071-013-0874-z.
- 11. Gan C., Yang X., Zhu Q., Jin J., He L. The spread of computer virus under the effect of external computers. Nonlinear Dynamics. 2013. Vol. 73, N 3. P. 1615–1620. https://doi.org/10.1007/s11071-013-0889-5.
- 12. Pinto C.M.A., Tenreiro Machado J.A. Fractional dynamics of computer virus propagation. Mathematical Problems in Engineering. 2014. Vol. 2014. Article number 476502. https://doi.org/10.1155/2014/476502.
- 13. Podlubny I. Fractional differential equations. New York: Elsevier, 1998. 340 p. URL: https://books.google.com.ua/books?id=K5FdXohLto0C.
- 14. Kilbas A.A., Srivastava H.M., Trujillo J.J. Theory and applications of fractional differential equations. Amsterdam: Elsevier, 2006. 523 p. URL: https://www.sciencedirect.com/bookseries/north-holland-mathematics-studies/vol/204/suppl/C.
- 15. Bulavatskiy V.M. Some modeling problems of fractional-differential geofiltrational dynamics within the framework of generalized mathematical models. Journal of Automation and Information Science. 2016. Vol. 48, Iss. 5. P. 27–41. https://doi.org/10.1615/JAutomatInfScien.v48.i5.30.
- 16. Bogayenko V.O., Bulavatsky V.M. Numerical-analytical solution of one problem of modeling fractional-differential dynamics of computer viruses. International scientific and technical journal "Problems of control and computer science". 2022. Vol. 67, No. 1. P. 56–65. https://doi.org/10.34229/1028-0979-2022-1-6.
- 17. Gorenflo R., Kilbas A.A., Mainardi F., Rogosin S.V. Mittag-Leffler functions, related topics and applications. Berlin; Heidelberg: Springer Verlag, 2014. 443 p. https://doi.org/10.1007/978-3-662-43930-2.
- 18. Diethelm K., Ford N.J., Freed A.D. Detailed error analysis for a fractional Adams method. Numer. Algorithms. 2004. Vol. 36, N 1. P. 31–52. https://doi.org/10.1023/B:NUMA.0000027736.85078.be.
- 19. Li C., Tao C. On the fractional Adams method. Comput. and Mathemat. with Applications. 2009. Vol. 58, Iss. 8. P. 1573–1588. https://doi.org/10.1016/j.camwa.2009.07.050.
- 20. Abramovitz M., Stegun I.A. Handbook of mathematical functions. New York: Dover Publications, 1965. 831 p. URL: https://books.google.com.ua/books?id=KiPCAgAAQBAJ.
- 21. Kolmogorov A.N., Fomin S.V. Elements of the theory of functions and functional analysis. New York: Dover Publications, 1999. 288 p. URL: https://books.google.com.ua/books?id=OyWeDwfQmeQC.
- 22. Granas A., Dugudji J. Fixed point theory. Springer, New York, 2003. 690 p. https://doi.org/10.1007/978-0-387-21593-8.
- 23. Almalahi M.A., Panchal S.K. Existence and stability results of relaxation fractional differential equations with Hilfer–Katugampola fractional derivative. Adv. Theory Nonlin. Anal. Appl. 2020. Vol. 4, N 4. P. 299–315. URL: https://atnaea.org/index.php/journal/article/view/138.
- 24. Harikrishnan S., Kanagarajan K., Vivek D. Some existence and stability results for integro-differential equations by Hilfer-Katugampola fractional derivative. Palestine Journal of Mathematics. 2020. Vol. 9, Iss. 1. P. 254–262. URL: https://pjm.ppu.edu/paper/640.
- 25. Abbas S., Benchohra M., Sivasundaram S. Dynamics and Ulam stability for Hilfer type fractional differential equations. Nonlinear. Stud. 2016. Vol. 23, N 4. P. 627–637. URL: https://www.nonlinearstudies.com/index.php/nonlinear/article/view/1413.
- 26. Wang J., Zhou Y., Medved M. Existence and stability of fractional differential equations with Hadamard derivative. Topol. Methods in Nonlinear Anal. 2013. Vol. 41, N 1. P. 113–133. URL: https://www.tmna.ncu.pl/static/published/2013/v41n1-05.pdf.
- 27. Ye H., Gao J., Ding Y. A generalized Gronwall inequality and its application to a fractional differential equation. J. Math. Anal. Approx. Theory. 2007. Vol. 328, Iss. 2. P. 1075–1081. https://doi.org/10.1016/j.jmaa.2006.05.061.
- 28. Zada M.B., Rashid H., Shah K., Abdeljawad T. Study of fractional variable order COVID-19 environmental transformation model. Open Physics. 2023. Vol. 21, N 1. P. 1–9. https://doi.org/10.1515/phys-2023-0123.