DOI
10.34229/KCA2522-9664.25.6.8
UDC 517.9
O.A. Kapustian
Taras Shevchenko National University of Kyiv, Kyiv, Ukraine,
olenakapustian@knu.ua,
olena.kap@gmail.com
N.V. Kasimova
Taras Shevchenko National University of Kyiv, Kyiv, Ukraine,
kasimova@knu.ua
APPROXIMATE OPTIMAL CONTROL FOR A NONLINEAR HYPERBOLIC INCLUSION
WITH PERTURBED NON-AUTONOMOUS COEFFICIENTS
Abstract. We study the optimal control problem for a nonlinear hyperbolic inclusion with rapidly oscillating non-autonomous coefficients. The main result establishes the convergence of optimal controls and corresponding trajectories from the original system to those of the averaged problem. Our approach relies on the averaging method and compactness arguments to justify the approximation and existence of optimal pairs for the perturbed system.
Keywords: averaging method, optimal control, hyperbolic inclusion, rapidly oscillating coefficients.
full text
REFERENCES
- 1. Kapustyan O., Kasimova N., Sobchuk V., Stanzhytskyi O. The averaging method for the optimal control problem of a parabolic inclusion with fast-oscillating coefficients on a finite time interval. Bulletin of Taras Shevchenko National University of Kyiv. Physical and Mathematical Sciences. 2024. Vol. 79, N 2. P. 33–40. https://doi.org/10.17721/1812-5409.2024/2.6.
- 2. Kapustyan O.A., Kasimova N.V. Approximate optimal control for a nonlinear hyperbolic equation with perturbed non-autonomous coefficients. Scientific Bulletin of Uzhgorod University. Series "Mathematics and Informatics". 2025. Vol. 46, No. 1. P. 305–313. https://doi.org/10.24144/2616-7700.2025.46(1).305-313.
- 3. Ahmed N.U., Kerbal S. Optimal control of nonlinear second order evolution equations. Journal of Applied Mathematics and Stochastic Analysis. 1993. Vol. 6, N 2. P. 123–136. http://dx.doi.org/10.1155/S1048953393000127.
- 4. Papageorgiou N.S. Existence of solutions for second-order evolution inclusions. Journal of Applied Mathematics and Stochastic Analysis. 1994. Vol. 7, N 4. P. 525–535. http://dx.doi.org/10.1155/S1048953394000407.
- 5. Papageorgiou N.S., Yannakakis N. Second order nonlinear evolution inclusions I: Existence and relaxation results. Acta Mathematica Sinica. 2005. Vol. 21, N 5. P. 977–996. https://doi.org/10.1007/s10114-004-0508-y.
- 6. Migorski S. Existence, variational and optimal control problems for nonlinear second order evolution inclusions. Dynam. Syst. and Appl. 1995. Vol. 4. P. 513–528. URL: https://www.dynamicpublishers.com/DSA/Ds41995.htm.
- 7. Kapustian O.A., Nakonechnyi O.G. Approximate minimax estimation of functionals of solutions to the wave equation under nonlinear observations. Cybernetics and Systems Analysis. 2020. Vol. 56, N 5. P. 793–801. https://doi.org/10.1007/s10559-020-00300-2.
- 8. Zadoianchuk N.V., Kasyanov P.O. Dynamics of solutions of a class of second-order autonomous evolution inclusions. Cybernetics and Systems Analysis. 2012. Vol. 48, N 3. P. 414–428. https://doi.org/10.1007/s10559-012-9421-z.
- 9. Zadoyanchuk N.V., Kas’yanov P.O. Faedo–Galerkin method for nonlinear second-order evolution equations with Volterra operators. Nonlinear Oscillations. 2007. Vol. 10, N 2. P. 203–228. https://doi.org/10.1007/s11072-007-0016-y.
- 10. Zadoyanchuk N.V., Kasyanov P.O. On the solvability of differential-operator inclusions of the second order with non-coercive operators of Wo-pseudomonotone type. Reports of the National Academy of Sciences of Ukraine. 2008. No. 4. P. 19–24. URL: https://nasplib.isofts.kiev.ua/items/5f4e9d52-da62-4894-8041-ae65eda4186d.
- 11. Zgurovsky M.Z., Mel’nik V.S. Nonlinear analysis and control of physical processes and fields. Berlin; Heidelberg: Springer, 2004. XIV, 508 p. https://doi.org/10.1007/978-3-642-18770-4.
- 12. Kasimova N., Feketa P. Application of the averaging method to the optimal control of parabolic differential inclusions on the semi-axis. Axioms. 2025. Vol. 14, Iss. 1. Article number 74. https://doi.org/10.3390/axioms14010074.
- 13. Dashkovskiy S., Kapustyan O., Kapustian O., Zhuk T. Asymptotic analysis of optimal control problems on the semiaxes for Caratheodory differential inclusions with fast oscillating coefficients. Nonlinear Analysis: Modelling and Control. 2023. Vol. 28, N 6. P. 1077–1088. https://doi.org/10.15388/namc.2023.28.33435.
- 14. Nakonechnyi A.G., Mashchenko S.O., Chikrij V.K. Motion control under conflict condition. Journal of Automation and Information Sciences. 2018. Vol. 50, Iss. 1. P. 54–75. https://doi.org/10.1615/JAutomatInfScien.v50.i1.40.
- 15. Kashpur O.F. Solving Hermite interpolation problem in finite-dimensional Euclidean space. Cybernetics and Systems Analysis. 2022. Vol. 58, N 2. P. 259–267. https://doi.org/10.1007/s10559-022-00458-x.
- 16. Aumann R.J. Integrals of set-valued functions. J. Math. Anal. Appl. 1965. Vol. 12, Iss. 1. P. 1–12. https://doi.org/10.1016/0022-247X(65)90049-1.
- 17. Aubin J.-P., Cellina A. Differential inclusions. Set-valued maps and viability theory. Berlin; Heidelberg: Springer, 1984. 355 p. URL: https://link.springer.com/book/10.1007/978-3-642-69512-4.
- 18. Chepyzhov V.V., Vishik M.I. Attractors of equations of mathematical physics. Providence, RI: American Mathematical Society, 2002. 362 p. URL: https://catalog.princeton.edu/catalog/SCSB-8709997.
- 19. Hermes H. Calculus of set valued functions and control. Indiana University Mathematics Journal. 1969. Vol. 18, Iss. 1. P. 47–59. https://doi.org/10.1512/IUMJ.1969.18.18006.
- 20. Warga J. Optimal control of differential and functional equations. New York; London: Academic Press, 2014. 546 p. URL: https://api.pageplace.de/preview/DT0400.9781483259192_A23866022/preview-9781483259192_A23866022.pdf.