DOI
10.34229/KCA2522-9664.26.1.3
UDC 621.396
I. Pitukh
West Ukrainian National University, Ternopil, Ukraine,
pirom75@ukr.net
ALGORITHMIC FOUNDATIONS OF MODULAR ARITHMETIC DETERMINATION
OF SAMPLE MATHEMATICAL EXPECTATION
Abstract. The mathematical foundations and algorithms for determining the sample expectation of stationary random processes are investigated. The functional limitations of the algorithms for determining the sample expectation in binary arithmetic of the Rademacher number-theoretic basis are substantiated. The low speed of determining the sample expectation in the Rademacher number-theoretic basis codes is due to the presence of end-to-end transfers when performing operations for accumulating the sums of the input digitized data of the random process. Lattice models and graphs of rank sum formation during the streaming accumulation of digital data on the sampling interval of a random process are presented. The theoretical foundations for algorithms determining the sample expectation in a non-positional number system of the Haar–Crestenson number-theoretic basis of residues are developed. Recommendations for choosing Haar–Crestenson code modules that correspond to four-bit codes of the Rademacher basis and eight-bit codes of RGB pixels of color images are provided. The results of the study allow expanding the functionality and increasing the speed of statistical data processing at the lower levels of interactive distributed computer systems.
Keywords: digitized sensor data, residual class system, Rademacher, Haar, and Haar–Krestenson numerical theoretical bases, special processor architectures, RGB pixel codes.
full text
REFERENCES
- 1. Analog-to-digital converter. Pat. 158736 Ukraine MPK (2006.01) H03M 1/38 (2006.01), / Pitukh I.R., Vozna N.Ya., Griga L.P. No. u 2024 04322; appl. 03.09.2024; publ. 13.03.2025. Bull. No. 11.
- 2. Pitukh I.R. Methods and circuit structures for determining sample, sliding and weighted mathematical expectations. Proc. problem-scientific interdisciplinary conference “Information problems of computer systems, jurisprudence, energy, modeling and management” (ISCM — 2023). Nadvirna, 2023. P. 64–71. URL: http://ncntu.com.ua/index.php/home/nauka-informatsiia/392-vseukrainska-problemno-naukova-mizhhaluzeva-konferentsiia-informatsiini-problemy-kompiuternykh-system-iurysprudentsii-enerhetyky-modeliuvannia-ta-upravlinnia.
- 3. Specialized computer technologies in computer science. Edited by Ya.M. Nykolaychuk. Ternopil: Beskydy, 2017. 919 p. URL: http://scs.wunu.edu.ua/?p=353.
- 4. Angelini P. Invariance of the mathematical expectation of a random quantity and its consequences. Risks. 2024. Vol 12, N 1. Article number 14. https://doi.org/10.3390/risks12010014.
- 5. Chattamvelli R., Shanmugam R. Mathematical expectation. In: Random Variables for Scientists and Engineers. Synthesis Lectures on Engineering, Science, and Technology. Cham: Springer, 2024. P. 1–63. https://www.doi.org/10.1007/978-3-031-58931-7_1.
- 6. Annamalai C. Mean and variance of mathematical expectation and frequency distribution. November 24, 2024. https://doi.org/10.5281/zenodo.14211141.
- 7. Vince J. Modular arithmetic. In: Foundation Mathematics for Computer Science. Cham: Springer, 2023. P. 123–139. https://doi.org/10.1007/978-3-031-17411-7_8.
- 8. Chielle E., Mazonka O., Gamil H., Maniatakos M. Coupling bit and modular arithmetic for efficient general-purpose fully homomorphic encryption. ACM Transactions on Embedded Computing Systems. 2024. Vol. 23, N 4. Article number 57. https://doi.org/10.1145/3665280.
- 9. Luongo A., Miti A.M., Narasimhachar V., Sireesh A. Measurement-based uncomputation of quantum circuits for modular arithmetic. arXiv:2407.20167v1 [quant-ph]. 29 Jul 2024. https://doi.org/10.48550/arXiv.2407.20167.
- 10. Kozlovskyi V., Shvets I., Lysetskyi Y., Karpinski M., Shaikhanova A., Shangytbayeva G. Control of telecommunication network parameters under conditions of uncertainty of the impact of destabilizing factors. Information. 2024. Vol 15, Iss. 2. Article number 69. https://doi.org/10.3390/info15020069.
- 11. Paramo G., Bretas A., Meyn S. Research trends and applications of PMUs. Energies. 2022. Vol. 15, N 15. Article number 5329. https://doi.org/10.3390/en15155329.
- 12. Gorban I.I. Probability Theory and Mathematical Statistics for Scientists and Engineers. Kyiv: IPMMS NASU, 2003. URL: http://www.immsp.kiev.ua/perspages/gorban_i_i.
- 13. Melnyk R.A. Algorithms and methods of image processing. Lviv: Lviv Polytechnic Publishing House, 2017. 220 p. URL: https://vlp.com.ua/node/16981.
- 14. Vozna N.Ya., Nykolaychuk Ya.M., Volynskyi O.I. Algorithms for solving problems of cryptographic protection of pixels of color images in the Rademacher basis and residual classes. Kibernetika i systemnyj analiz. 2019. Vol. 55, No. 3. P. 149–163. .
- 15. Vozna N.Ya. Structuring of multifunctional data: theory, methods, and tools. Ternopil: TNEU, 2018. 378 p. URL: https://dspace.wunu.edu.ua/bitstream/316497/32910/1/Vozna-monogr.pdf.