Cybernetics And Systems Analysis logo
Editorial Board Announcements Abstracts Authors Archive
Cybernetics And Systems Analysis
International Theoretical Science Journal
UDC 517.9:519.6
V.M. Bulavatsky1


1 V.M. Glushkov Institute of Cybernetics of the National Academy of Sciences of Ukraine, Kyiv, Ukraine

v_bulav@ukr.net

AN INVERSE PROBLEM FOR ANOMALOUS DIFFUSІON
WITH BI-ORDINAL HILFER’S DERIVATIVE

Abstract. The formulation is completed and solution of the inverse problem is obtained for determining the field function and the function dependent on the geometric variable source for the anomalous diffusion equation with bi-ordinal Hilfer’s fractional derivative and variable direction of time. The existence and uniqueness of the solution of the considered problem are established.

Keywords: anomalous diffusion, fractional differential diffusion equation, bi-ordinal Hilfer’s derivative, equations with variable direction of time, inverse problem.



FULL TEXT

REFERENCES

  1. Sobolev S.L. Local non-equilibrium transport models. Physics-Uspekhi. 1997. Vol. 167, N 10. P. 1095–1106.

  2. Khasanov M.M., Bulgakov G.T. Nonlinear and non-equilibrium effects in rheologically complex environments [in Russian]. Moscow – Izhevsk: Institute for Computer Studies, 2003. 288 p.

  3. Meilanov R.P., Beybalaev V.D., Shibanova M.R. Applied aspects of fractional calculus [in Russian]. Saarbrucken: Palmarium Academic Publishing, 2012. 135 p.

  4. Samko S.G., Kilbas A.A., Marichev O.I. Fractional integrals and derivatives: Theory and applications. Yverdon, Switzerland: Gordon and Breach Science Publishers, 1993. 688 p.

  5. Kilbas A.A., Srivastava H.M., Trujillo J.J. Theory and аpplications of fractional differential equations. Amsterdam: Elsevier, 2006. 523 p.

  6. Podlubny I. Fractional differential equations. New York: Academic Press, 1999. 341 p.

  7. Mainardi F. Fractional calculus and waves in linear viscoelasticity. London: Imperial College Press, 2010. 368 p.

  8. Berdyshev A.S., Kadirkulov B.J., Turmetov B.Kh. Some inverse problems for heat conducting equation of fractal order. KAZNU BULLETIN. Ser. Mathematics, Mechanics, Informatics. 2010, № 2 (65). P. 36–41.

  9. Kirane M., Malik S.A. Determination of an unknown source term and the temperature distribution for the linear heat equation involving fractional derivative in time. Applied Mathematics and Computation. 2011. Vol. 218. P. 163–170.

  10. Aleroev T.S., Kirane M., Malik S.A. Determination of a source term for a time fractional diffusion equation with an integral type over-determining condition. Electronic Journal of Differential Equations. 2013. Vol. 270. P. 1–16.

  11. Fatma Al-Musalhi, Nasser Al-Salti, Sebti Kerbal. Inverse problems of a fractional differential equations with Bessel operator. arXiv: 1609.04587 v1, 2016.

  12. Furati K.M., Iyiola O.S., Kirane M. An inverse problem for a generalized fractional diffusion. Applied Mathematics and Computation. 2014. Vol. 249. P. 24–31.

  13. Furati K.M., Iyiola O.S., Kassem M. An inverse source problem for a two- parameter anomalous diffusion with local time datum. arXiv: 1604.06886 v1, 2016.

  14. Turmetov B.Kh., Shynaliyev K.M. On the solvability of initial-boundary problems for a generalized heat equation. L.N.Gumilyov Eurasian National University Bulletin. Ser. Natural-Technical Sciences. 2011. Iss. 6 (85). С. 8–14.

  15. Kaliev I.A., Pervushina M.M. Inverse problems for the heat equation. Modern problems of physics and mathematics [in Russian]. Ufa: Gilem, 2004. Т. 1. P. 50–55.

  16. Kaliev I.A., Sabitova M.M. Problems of determining the temperature and density of heat sources from the initial and final temperatures. Sibirskii Zhurnal Industrial’noi Matematiki. 2009. Vol. 12, N 1 (37). С. 89–97.

  17. Orazov I., Sadybekov M.A. One nonlocal problem of determination of the temperature and density of heat sources. Izv. Vyssh. Uchebn. Zaved. Mat. 2012. N 2. С. 70–75.

  18. Kaliev I.A., Mugafarov M.F., Fattahova O.V. Inverse problem for forwardbackward parabolic equation with generalized conjugation conditions. Ufimsk. Mat. Zh. 2011. Vol. 3, № 2. P. 34–42.

  19. Yanenko N.N., Novikov V.A. About one fluid model with alternating viscosity coefficient [in Russian]. Numerical methods of continuum mechanics. Novosibirsk: EC SB USSR, 1973. Т. 4, № 2. P. 142–147.

  20. Bulavatsky V.M. Closed form of the solutions of some boundary-value problems for anomalous diffusion equation with Hilfer’s generalized derivative. Cybernetics and Systems Analysis. 2014. Vol. 50, N 4. P. 570–577.

  21. Bulavatsky V.M., Gladky A.V. Mathematical modeling of the dynamics of a nonequilibrium diffusion process on the basis of integro-differentiation of fractional order. Cybernetics and Systems Analysis. 2015. Vol. 51, N 1. P. 134–141.

  22. Sandev T., Metzler R., Tomovski Z. Fractional diffusion equation with a generalized Riemann–Liouville time fractional derivative. Journal of Physics A. 2011. Vol. 44. P. 5–52.

  23. Tomovski Z., Sandev T., Metzler R., Dubbeldam J. Generalized space-time fractional diffusion equation with composite fractional time derivative. Physica A. 2012. Vol. 391. P. 2527–2542.

  24. Abramovitz M., Stegun I.A. Handbook of mathematical functions. New York: Dover, 1965. 831 p.

  25. Hilfer R. Fractional time evolution. Applications of Fractional Calculus in Physics. Ed. Hilfer R. Singapore: World scientific, 2000. P. 87–130.

  26. Gorenflo R., Kilbas A.A., Mainardi F., Rogosin S.V. Mittag-Leffler functions, related topics and applications. Berlin: Springer-Verlag, 2014. 454 p.

  27. Tulasynov M.S. Boundary value problem for one parabolic equation with changing time direction with complete matrix of sewing conditions. Bulletin of the Novosibirsk State. un-ty. Series: Mathematics, Mechanics, Informatics. 2009. Т. 9, Iss. 1. P. 57–68.

© 2019 Kibernetika.org. All rights reserved.