Cybernetics And Systems Analysis logo
Editorial Board Announcements Abstracts Authors Archive
Cybernetics And Systems Analysis
International Theoretical Science Journal
UDC 519.85
M.I. Gil1, V.M. Patsuk2


1 A. Pidgorny Institute of Mechanical Engineering Problems,
National Academy of Sciences of Ukraine, Kharkiv, Ukraine

2 A. Pidgorny Institute of Mechanical Engineering Problems,
National Academy of Sciences of Ukraine, Kharkiv, Ukraine

vmpatsuk@gmail.com

PHI-FUNCTIONS OF 2D OBJECTS WITH BOUNDARIES BEING SECOND ORDER CURVES

Abstract. An approach to constructing analytical conditions of non-intersection and inclusion of non-oriented convex 2D objects is considered, the boundaries of objects being second-order curves in the canonical form. In particular, the conditions of mutual non-intersection of a pair of ellipses; an ellipse and an area bounded by a parabola; conditions of containment of a circle in an ellipse, an ellipse in an ellipse, an ellipse in a region bounded by a parabola are constructed. The analytical conditions are constructed on the basis of the equations of the boundaries of the corresponding objects (areas) and then are reduced to the form of a system of inequalities depending on the placement parameters of the objects and the parameter, which is the solution of a certain equation of one variable. Based on the obtained systems of inequalities, the corresponding Φ-functions are constructed.

Keywords: ellipses, parabola, non-intersection, containment, Φ-функції-functions .



FULL TEXT

REFERENCES

  1. Stoyan Y., Pankratov A., Romanova T., Fasano G., Pinter J, Stoian Y. E., Chugay A. Optimized packings in space engineering applications: Part I. Springer Optimization and Its Applications. 2019. Т. 5. С. 395–437. https://doi.org/10.1007/978-3-030-10501-3_15.

  2. Stoyan Yu.G., Shaithauer G., Yaskov G.N. Packing unequal balls in different containers. Kibernetika i sistemnyj analiz. 2016. Vol. 52, N 3. P. 97–105.

  3. Stoyan Yu.G., Syomkin V.V., Chugay A.M. Optimizing the layout of 3D objects in a multiply connected region, taking into account the shortest distances. Kibernetika i sistemnyj analiz. 2014. Т. 50, N 3. С. 58–70.

  4. Yakovlev S.V. On some classes of spatial configurations of geometric objects and their formalization. Journal of Automation and Information Sciences. 2018. Vol. 50, N 9. P. 38–50.

  5. Yakovlev S.V. Formalizing spatial configuration optimization problems with the use of a special function class. Cybernetics and Systems Analysis. 2019. Vol. 55, N 4. P. 581–589.

  6. Stoyan Y.G., Yakovlev S.V. Configuration space of geometric objects. Cybernetics and Systems Analysis. 2018. Vol. 54, N 5. P. 716–726.

  7. Yakovlev S.V. The method of artificial dilation in problems of optimal packing of geometric objects. Cybernetics and Systems Analysis. 2017. Vol. 53, N 5. P. 725–731.

  8. Stoyan Yu.G., Romanova T.E., Chernov N.I., Pankratov A.V. A complete class of Φ-functions for basic 2D φ-objects. Dop. NAS of Ukraine. 2010. N 12. P. 25–30.

  9. Stoyan Y., Chugay А. Mathematical modeling of the interaction of non-oriented convex polytopes. Cybernetics and Systems Analysis. 2012. Vol. 48, N 6. P. 837–845.

  10. Stoyan Y.G., Chugay A.M. Packing different cuboids with rotations and spheres into a cuboid. Advances in Decision Sciences. 2014. URL: https://www.hindawi.com /journals/ads/2014/571743.

  11. Stoyan Y.G., Semkin V.V., Chugay A.M. Modeling close packing of 3D objects. Cybernetics and Systems Analysis. 2016. Vol. 52, N 2. P. 296–304.

  12. Grebennik I.V., Pankratov A.V., Chugay A.M., Baranov A.V. Packing n-dimensional parallelepipeds with the feasibility of changing their orthogonal orientation in an n-dimensional parallelepiped. Cybernetics and Systems Analysis. 2010. Vol. 46, N 5. P. 393–802.

  13. Birgin E., Bustamante L., Callisaya H., MartЗnez J.M. Packing circles within ellipses. International Transactions in Operational Research. 2013. Vol. 20, Issue 3. P. 365–389. https://doi.org/10.1111/itor.12006.

  14. Pankratov A.V., Romanova T.Ye., Subbota I.A. Development of efficient algorithms for optimal packing of ellipses. Eastern European Journal of Advanced Technologies. 2014. N 5(4). P. 28–35.

  15. Pankratov A.V., Romanova T.E., Khlud O.M. On the problem of packing ellipses. Journal of Numerical and Applied Mathematics. 2016. N 3. P. 51–63.

  16. Pankratov A.V., Romanova T.Ye., Subbota I.A. Development of efficient algorithms for optimal ellipse packing. Eastern-European Journal of Enterprise Technologies. 2014. Vol. 5, N 4(71). 28 p. https://doi.org/10.15587/1729-4061.2014.28015.

  17. Pankratov A., Romanova T. Litvinchev I. Packing ellipses in an optimized rectangular container. Wireless Networks. 2018. P. 1–11. https://doi.org/10.1007/s11276-018-1890-1.

  18. Stoyan Yu.G., Pankratov A.V., Romanova T.E., Chernov N.I. Quasi-phi-functions for mathematical modeling of geometric object relations. Dopovidi of the National Academy of Sciences of Ukraine. 2014. N 9. P. 49–54. URL: http://dspace.nbuv.gov.ua/handle/123456789/88249.

  19. Stoyan Y., Pankratov A., Romanova T. Quasi-phi-functions and optimal packing of ellipses. Journal of Global Optimization. June 2016. Vol. 65, Iss. 2. P. 283–307.

  20. Komyak Va., Komyak Vl., Danilin A. A study of ellipse packing in the high-dimensionality problems. Eastern European Journal of Advanced Technologies. 2017. N 1(4). P. 17–23. URL: http://nbuv.gov.ua/UJRN/Vejpte_2017_1(4)_3.

  21. Korn G., Korn T. Handbook of mathematics for scientists and engineers [in Russian]. Moscow: Nauka, 1984. 832 p.
© 2020 Kibernetika.org. All rights reserved.