Cybernetics And Systems Analysis logo
Editorial Board Announcements Abstracts Authors Archive
Cybernetics And Systems Analysis
International Theoretical Science Journal
-->

UDC 519.1
М.F.  Semeniuta1


1 Flight Academy of the National Aviation University,
Kropyvnytskyi, Ukraine

marina_semenyuta@ukr.net

COMBINATORIAL CONFIGURATIONS IN DETERMINATION OF ANTIMAGIC
LABELINGS OF GRAPHS

Abstract. We have formalized the definition of graph labeling in terms of combinatorial configurations. We have investigated the connection between edge and vertex ( a, d)-distance antimagic labelings with such well-known configurations as separating systems and magic rectangle set. We have obtained a solution to the problem of construction of indicated labelings for some types of graphs and certain values a, d.

Keywords: combinatorial configuration, separating system, magic rectangle set, regular graph, bi-regular graph, antimagic labeling, ( a, d)-distance antimagic labelinng.



FULL TEXT

REFERENCES

  1. Colbourn C., Dinitz J. Handbook of combinatorial designs. Ed. by Colbourn Ch.J., Dinitz J.H. 2nd ed. Discrete Mathematics and Its Applications. New York: Taylor Francis Group, 2007. 1016 p.

  2. Sachkov V.N. Combinatorial methods of discrete mathematics [in RUssian]. Moscow: Nauka, 1977. 320 p.

  3. Hartshorne R. Publication history of von Staudt’s Geometrie der Lage. Archive for History of Exact Sciences. 2008. Vol. 62, N 3. P. 297–299.

  4. Gropp H. Configurations and graphs. Discrete Mathematics. 1993. Vol. 111. P. 269–276.

  5. Gropp H. Configurations and graphs — II. Discrete Mathematics. 1997. Vol. 164. P. 155–163.

  6. Bokowski J., Sturmfels B. Computational synthetic geometry. Lecture Notes in Mathematics. Berlin: Springer-Verlag, 1989. 168 p.

  7. Baer R. Nets and groups. Transactions of the American Mathematical Society. 1939. Vol. 46. P. 110–141.

  8. Baer R. Nets and groups. II. Transactions of the American Mathematical Society. 1940. Vol. 47. P. 435–439.

  9. Cameron P., van Lint J. Graph theory, coding theory and block designs [Russian translation]. Moscow: Nauka, 1980. 140 p.

  10. Ushio K. G-designs and related designs. Discrete Mathematics. 1993. Vol. 116. P. 299–311.

  11. Donets G.P. Graph approach to solving problems of combinatorial recognition. Kibernetika i sistemnyj analiz. 2017. Vol. 53, N 6. P. 44–53.

  12. Berge C. Principes de combinatoire. Paris: Dunod, 1968. 146 p.

  13. Stoyan Yu.G., Yakovlev. S.V. Theory and Methods of Euclidian Combinatorial Optimization: Current Status and Prospects. Kibernetika i sistemnyj analiz. 2020. Vol. 56, N 3. P. 30–47.

  14. Rylandsa L., Phanalasy O., Ryanb J., Miller M. Construction for antimagic generalized web graphs. AKCE International Journal of Graphs and Combinatorics. 2011. Vol. 8, N 2. P. 141–149.

  15. Hartsfield N., Ringel G. Supermagic and antimagic graphs. J. Recreat. Math. 1989. Vol. 21, N 2. P. 107–115.

  16. Froncek D. Handicap distance antimagic graphs and incomplete tournaments. AKCE International Journal of Graphs and Combinatorics. 2013. Vol. 10, N 2. P. 119–127.

  17. Arumugam S., Kamatchi N. On -distance antimagic graphs. Australasian Journal of Combinatorics. 2012. Vol. 54. P. 279–287.

  18. Gallian J.A. A dynamic survey of graph labeling. The Electronic Journal of Combinatorics. Twenty-second ed. 2019. DS6: Dec 15. 535 p.

  19. Renyi A. On random generating elements of a finite boolen algebra. Acta Scientiarum Mathematicarum. 1961. Vol. 22, N 1–2. P. 75–81.

  20. Dickson T.J. On a problem concerning separating systems of a finite set. Journal of Combinatorial Theory. 1969. Vol. 7. P. 191–196.

  21. Roberts I.T. Extremal problems and designs on finite sets. Ph.D. Thesis. Bentley (Perth), Australia: Curtin Univ. of Technology, 1999. 176 p.

  22. Bier T., Rogers G. Balanced magic rectangles. European Journal of Combinatorics. 1993. Vol. 14. P. 285–299.

  23. Bier T., Kleinschmidt A. Centrally symmetric and magic rectangles. Discrete Mathematics. 1997. Vol. 176. P. 29–42.

  24. Hagedorn T. On the existence of magic n-dimensional rectangles. Discrete Mathematics. 1999. Vol. 207. P. 53–63.

  25. Froncek D. A note on incomplete regular tournaments with handicap two of order n≡8(mod16). Opuscula Mathematica. 2017. Vol. 37, N 4. P. 557–566.




© 2021 Kibernetika.org. All rights reserved.