Cybernetics And Systems Analysis logo
Editorial Board Announcements Abstracts Authors Archive
Cybernetics And Systems Analysis
International Theoretical Science Journal
-->

UDC 519.8
S.V. Pashko1


1 Institute of Software Systems,
National Academy of Sciences of Ukraine, Kyiv, Ukraine

pashko55@yahoo.com

TIME OPTIMAL CONTROL PROBLEM FOR THE LOTKA–VOLTERRA SYSTEM

Abstract. We consider a controlled system of Lotka–Volterra differential equations that describes the evolution of two interrelated populations of predators and prey. The system contains two control variables, which are chosen so that the transition time to a stationary point is minimal. In the article, the control functions and the corresponding trajectories of motion in the state space are constructed, and their optimality is substantiated.

Keywords: maximum principle, stationary point, minimum time.



FULL TEXT

REFERENCES

  1. Yosida S. An optimal control problem of the prey-predator system. Funck. Ekvacioj. 1982. Vol. 25. P. 283–293.

  2. Kolmanovsky V.B., Spivak A.K. On the speed control of the "predator–prey" system. App. mathematics and mechanics. 1990. Vol. 54, n 3. P. 502–506.

  3. Mikhailova E.V. Optimal control in the Lotka–Volterra predator–prey system. Mathematical modeling and boundary value problems: Proceedings of the 3rd All-Russian. scientific. conf. (May 29-31, 2006), 2006. P. 123–126.

  4. Apreutesei N.C. An optimal control problem for a prey-predator system with a general functional response. Applied Mathematics Letters. 2009. Vol. 22, N 7. P. 1062–1065.

  5. Sadiq A.N. The dynamics and optimal control of a prey-predator system. Global Journal of Pure and Applied Mathematics. 2017. Vol. 13. P. 5287–5298.

  6. Vincent T.L. Pest management programs via optimal control theory. Biometrics. 1975. Vol. 31. P. 1–10.

  7. Albrecht F., Gatzke H., Haddad A., Wax N. On the control of certain interacting populations. Journal of Mathematical Analysis and Applications. 1976. Vol. 53, Iss. 3. P. 578–603.

  8. Arnold V.I. Ordinary differential equations. Izhevsk: Izhevsk Republican Printing House, 2000. 367 p.

  9. Pontryagin L.S., Boltyansky V.G., Gamkrelidze R.V., Mishchenko E.F. Mathematical theory of optimal processes [in Russian]. Moscow: Nauka, 1969. 384 p.

  10. Болтянский В.Г. Математические методы оптимального управления. Москва: Наука, 1969. 408 с.

  11. Pontryagin L.S. Ordinary differential equations [in Russian]. Moscow: Nauka, 1965. 331 p.

  12. Fikhtengolts G.M. Differential and integral calculus course [in Russian]. Vol. 1. Moscow: Nauka, 1969. 607 p.




© 2021 Kibernetika.org. All rights reserved.