Cybernetics And Systems Analysis logo
Editorial Board Announcements Abstracts Authors Archive
Cybernetics And Systems Analysis
International Theoretical Science Journal
-->

UDC 519.21+62
І.V. Samoilenko1, A.V. Nikitin2, G.V. Verovkina3


1 Taras Shevchenko National University of Kyiv,
Kyiv, Ukraine

isamoil@i.ua

2 National University of Life and Environmental Sciences of Ukraine,
Kyiv, Ukraine, and Jan Kochanowski University of Kielce, Poland

nikitin2505@nubip.edu.ua, anatolii.nikitin@ujk.edu.pl

3 Taras Shevchenko National University of Kyiv,
Kyiv, Ukraine

avv@univ.kiev.ua

PECULIARITIES OF CONSTRUCTION AND ANALYSIS
OF THE INFORMATION WARFARE MODEL AT MARKOV
SWITCHINGS AND IMPULSE PERTURBATIONS
UNDER LEVY APPROXIMATION CONDITIONS

Abstract. We construct and analyze a continuous evolutionary model that describes the conflicting interaction of two complex systems with non-trivial internal structures. External conflict interaction is modeled by the additional influence of random factors. The dynamics of internal conflict is similar to the Lotka–Volterra model, namely, the information warfare model. We interpret the new model of information warfare as the impact of rare events that quickly change certain perceptions of a large number of people. As a result, the number of proponents of different ideas makes stochastic leaps, which we can see using the Levy approximation scheme. We claim that such a model is more natural, because important news now has a rapid impulse impact on the audience through information channels and social networks.

Keywords: random evolution, Levy approximation, information warfare model.



FULL TEXT

REFERENCES

  1. Lotka A.J. Relation between birth rates and death rates. Science. 1907. Vol. 26, Iss. 653. P. 21–22. http://doi.org/10.1126/science.26.653.21-a.

  2. Stone L., Olinky R. Phenomena in ecological systems, Experimental Chaos. Proc. 6th Experimental Chaos Conference (22–26 July 2001, Potsdam, Germany). Potsdam, Germany. 2003. P. 476-487.

  3. Takahashi K.I., Salam K.Md.M. Mathematical model of conflict with non-annihilating multi-opponent. J. Interdisciplinary Math. 2006. Vol. 9, Iss. 3. P. 459–473. http://doi.org/10.1080/ 09720502.2006. 10700457.

  4. Tufto J. Effects of releasing maladapted individuals: a demographic evolutionary model. The American Naturalist. 2001. Vol. 158, N 4. P. 331–340. http://doi.org/10.1086/321987.

  5. Verhulst P.P. Notice sur la loi que la population suit dans son accroissement. Correspondence mathematique et physique publiee par A. Quetelet. 1838. Vol. 10. P. 113–

  6. Volterra V. Sui tentativi di applicazione della matematiche alle scienze biologiche e sociali. Giornale degli Economisti. 1901. Vol. 23. P. 436–458.

  7. Mikhailov A.P., Marevtseva N.A. Models of information warfare. Math. Models Comput. Simul. 2012. Vol. 4, Iss. 3. P. 251–259. http://doi.org/10.1134/S2070048212030076.

  8. Korolyuk V.S., Limnios N. Stochastic Systems in Merging Phase Space. World Scientific Publishing, 2005. 330 p.

  9. Korolyuk V.S., Limnios N., Samoilenko I.V. LБvy and Poisson approximations of switched stochastic systems by a semimartingale approach. Comptes Rendus MathБmatique. 2016. Vol. 354, Iss. 7. P. 723–728.

  10. Samoilenko I.V., Nikitin A.V. Differential equations with small stochastic terms under the LБvy approximating conditions. Ukrainian Mathematical Journal. 2018. Vol. 69. P. 1445–1454. http://doi.org/10.1007/s11253-018-1443-x.

  11. Nikitin A.V. Asymptotic dissipativity of stochastic processes with impulsive perturbation in the LБvy approximation scheme. Journal of Automation and Information Sciences. 2018. Vol. 50, Iss. 4. P. 54–63. http://doi.org/10.1615/JAutomatInfScien.v50.i4.50.

  12. Chabanyuk Y.M., Nikitin A.V., Khimka U.T. Asymptotic properties of the impulse perturbation process under Levy approximation conditions with the point of equilibrium of the quality criterion. Matematychni Studii. 2019. Vol. 52, Iss. 1. P. 96–104. http://doi.org/10.30970/ms.52.1.96-104.

  13. Nikitin A.V. Asymptotic properties of a stochastic diffusion transfer process with an equilibrium point of a quality criterion. Cybernetics and Systems Analysis. 2015. Vol. 51, N 4. P. 650–656. http://doi.org/10.1007/s10559-015-9756-3.

  14. Samoilenko I.V., Chabanyuk Y.M., Nikitin A.V., Khimka U.T. Differential equations with small stochastic additions under Poisson approximation conditions. Cybernetics and Systems Analysis. 2017. Vol. 53, N 3. P. 410–416. http://doi.org/10.1007/s10559-017-9941-7.

  15. Korolyuk V.S., Samoilenko I.V. Potential operator of the Ornstein–Uhlenbeck process with applications. National Academy of Ukraine Reports (in Ukrainian). 2013. № 3. P. 21–27.

  16. Uhlenbeck G.E., Ornstein L.S. On the theory of Brownian motion. Phys. Rev. 1930. Vol. 36. P. 823–841.

  17. Korolyuk V.S., Skorokhod A.V., Portenko N.I., Turbin A.F. Handbook of probability theory and mathematical statistics [in Russian]. Kiev: Naukova dumka, 1978. 582 p.

  18. Nevelson M.B., Khas’minskii, R.Z. Stochastic approximation and recursive estimation. Moscow: Nauka, 1972. 298 p.

  19. Papanicolaou G., Stroock D., Varadhan S.R.S. Martingale approach to some limit theorems. Proc. Duke turbulence conference (April 23-25, 1976, Durham, NC). Duke University Mathematics Series III, New York: Duke University, 1977, 120 p.




© 2021 Kibernetika.org. All rights reserved.