UDC 519.837
1 Institute of Applied Systems Analysis of the National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”, Kyiv, Ukraine
lesia@baranovsky.org
|
|
DIFFERENTIAL-DIFFERENCE GAMES OF APPROACH WITH MULTIPLE DELAYS
Abstract. Differential-difference games of approach with multiple delays are considered.
The schemes of the method of resolving functions and of the first direct Pontryagin’s method are developed.
Sufficient conditions for the game completion are obtained. For the first time in these games,
new Cauchy formulas convenient for numerical implementation are used for systems with permutation matrices and systems with pure delay.
Keywords: conflict-controlled process, differential games, differential-difference games, resolving function method, Pontryagin’s first direct method.
FULL TEXT
REFERENCES
- Isaacs R. Differential games. New York: John Wiley, 1965. 480 p.
- Pontryagin L.S. Selected scientific works. Vol. 2 [in Russian]. Moscow: Nauka, 1988. 576 p.
- Nikolsky M.S. The first direct method of L.S. Pontryagin in differential games. Moscow: Izd-vo MGU, 1984. 65 p.
- Chikrii A.A. Conflict controlled processes. Boston; London; Dordrecht: Springer Science and Business Media, 2013. 424 p.
- Chikrii A.A. Control of moving objects in condition of conflict. Control Systems: Theory and Applications, 2018. P. 17–42.
- Vlasenko L.A., Rutkas A.G., Chikrii A.A. On a differential game in an abstract parabolic system. Proc. Steklov Institute of Mathematics. 2016. Vol. 293. P. 254–269. https://doi.org/10.1134/S0081543816050229.
- Chikrij A.A., Dzyubenko K.G. Bilinear Markovian processes of search for moving objects. Problemy Upravleniya i Informatiki (Avtomatika). 1997. Iss. 1. P. 92–106.
- Chikrii A.A., Eidelman S.D. Control game problems for quasilinear systems with Riemann–Liouvtlle fractional derivatives. Cybernetics and Systems Analysis. 2001. Vol. 37, N 6. P. 836–864. https://doi.org/10.1023/A:1014529914874.
- Baranovskaya L.V., Chikrij A.A., Chikrij Al.A. Inverse Minkowski functional in a nonstationary problem of group pursuit. Izvestiya Akademii Nauk. Teoriya i Sistemy Upravleniya. 1997. Vol. 1. P. 109–114.
- Chikriy A.A., Baranovskaya L.V., Chikriy A.A. An approach game problem under the failure of controlling devices. J. of Automation and Information Sciences. 2000. Vol. 32, N 5. P. 1–8. https://doi.org/10.1615/JAutomatInfScien.v32.i5.10.
- Baranovskaya L.V., Chikrii A.A., Chikrii Al.A. Inverse Minkowski functional in a nonstationary problem of group pursuit. Journal of Computer and Systems Sciences International. 1997. Vol. 36, N 1. P. 101–106.
- Chikrij A.A., Baranovskaya L.V., Chikrij Al.A. The game problem of approach under the condition of failure of controlling devices. Problemy Upravleniya i Informatiki (Avtomatika). 1997. N 4. P. 5–13.
- Baranovskaya L.V., Chikrii Al.A. Game problems for a class of hereditary systems. J. of Automation and Information Sciences. 1997. Vol. 29, N 2. P. 87–97. https://doi.org/10.1615/JAutomatInfScien.v29.i2-3.120.
- Chikrii A.A., Rappoport I.S. Systems analysis method of resolving functions in the theory of conflict-controlled processes. Cybernetics and Systems Analysis. 2012. Vol. 48, N 4. P. 512–531. https://doi.org/10.1007/s10559-012-9430-y.
- Chikrii A.A., Rappoport I.S., Chikrii K.A. Multivalued mappings and their selectors in the theory of conflict-controlled processes. Cybernetics and Systems Analysis. 2007. Vol. 43, N 5. P. 719–730. https://doi.org/10.1007/s10559-007-0097-8.
- Nikolskii M.S. Linear differential pursuit games in the presence of delays. Reports of the USSR Academy of Sciences. 1971. Vol. 197, N 5. P. 1018–1021.
- Chikrii A.A., Chikrii G.Ts. Group pursuit in differential-difference games. Differential Equations. 1984. Vol. ХХ, N 5. P. 802–810.
- Baranovskaya L.V., Baranovskaya G.G. On a differential-difference group pursuit game. Reports of the National Academy of Sciences of Ukraine. 1997. N 3. P. 12–15.
- Kirichenko N.F., Baranovskaya L.V., Chikrii Al.A. On a class of linear differential-difference games of approach. Reports of the National Academy of Sciences of Ukraine. 1997. N 6. P. 24–26.
- Baranovska L.V. Group pursuit differential games with pure time-lag. Understanding Complex Systems. 2021. P. 475–488. https://doi.org/10.1007/978-3-030-50302-4_23.
- Baranovska L.V. Method of resolving functions for the differential-difference pursuit game for different-inertia objects. Studies in Systems, Decision and Control. 2016. Vol. 69. P. 159–176. https://doi.org/10.1007/978-3-319-40673-2_7.
- Baranovska G.G., Baranovska L.V. Group pursuit in quasilinear differential-difference games. J. of Automation and Information Sciences. 1997. Vol. 29, N 1. P. 55–62. https://doi.org/10.1615/JAutomatInfScien.v29.i1.70.
- Baranovskaya L.V. A method of resolving functions for one class of pursuit problems. Eastern-European Journal of Enterprise Technologies. 2015. Vol. 2, N 4. P. 4–8. https://doi.org/10.15587/1729-4061.2015.39355.
- Baranovska L.V. Quasi-linear differential-difference game of approach. Understanding Complex Systems. 2019. P. 505–524. https://doi.org/10.1007/978-3-319-96755-4_26.
- Baranovska L.V. Pursuit differential-difference games with pure time-lag. Discrete and Continuous Dynamical Systems — B. 2019. Vol. 24, N 3. P. 1021–1031. https://doi.org/ 10.3934/dcdsb.2019004.
- Baranovska L.V. On quasilinear differential-difference games of approach. J. of Automation and Information Sciences. 2017. Vol. 49, N 8. P. 53–67. https://doi.org/10.1615/ JAutomatInfScien.v49.i8.40.
- Bellman R., Cook K. Differential-difference equations [Russian translation]. Moscow: Mir, 1967. 548 p.
- Khusainov D.Ya., Diblik J., Ruzhichkova M. Linear dynamical systems with aftereffect. Representation of solutions, stability, control, stabilization [in Russian]. Kiev: GP Inform.-analyt. agency, 2015. 252 p.
- Krasovskii N.N. Game problems about the meeting of movements [in Russian]. Moscow: Nauka, 1970. 420 p.
- Hajek O. Pursuit games. New York: Academic Press, 1975. Vol. 12. 266 p.
- Hale J. Theory of functional differential equations. Applied Mathematical Sciences. 1977. Vol. 3. New York; Heidelberg: Springer-Verlag, 1977. 365 p.
- Khusainov D.Ya., Shuklin G.V. Linear autonomous time-delay system with permutation matrices solving. Stud. Univ. Zilina Math. Ser. 2003. Vol. 17. P. 101–108.
- Medved M., Pospisil M. Sufficient conditions for the asymptotic stability of nonlinear multidelay differential equations with linear parts defined by pairwise permutable matrices. Nonlinear Anal. 2012. Vol. 75, Iss. 7. P. 3348–3363.
- Pospіsil M. Representation of solutions of systems of linear differential equations with multiple delays and nonpermutable variable coefficients. Mathematical Modeling and Аnalysis. 2020. Vol. 25, Iss. 2. P. 303–322.
- Pospіsil M., Jaro F. On the representation of solutions of delayed differential equations via Laplace transform. Electronic Journal of Qualitative Theory of Differential Equations. 2016. N 117. P. 1–13.
- Aubin J.-P., Frankowska H. Set-valued analysis. Boston; Basel; Berlin: Birkhauser, 1990. 461 p.
- Натансон И.П. Теория функций вещественной переменной. Москва: Наука, 2008. 560 p.
- Chikrii A.A. Guaranteed result in motion control game problems. Tr. IMM UB RAS. 2010. Vol. 16, N 5. P. 223–232.