Cybernetics And Systems Analysis logo
Editorial Board Announcements Abstracts Authors Archive
Cybernetics And Systems Analysis
International Theoretical Science Journal
-->

UDC 519.85
Y.G. Stoyan1, T.E. Romanova2, O.V. Pankratov3,
P.I. Stetsyuk4, S.V. Maximov5



1 A. Pidgorny Institute of Mechanical Engineering
Problems of the National Academy of Sciences
of Ukraine, Kharkiv, Ukraine

yustoyan19@gmail.com

2 A. Pidgorny Institute of Mechanical Engineering
Problems of the National Academy of Sciences
of Ukraine, Kharkiv, Ukraine

tarom27@yahoo.com

3 A. Pidgorny Institute of Mechanical Engineering
Problems of the National Academy of Sciences
of Ukraine, Kharkiv, Ukraine

pankratov2001@yahoo.com

4 V.M. Glushkov Institute of Cybernetics,
National Academy of Sciences of Ukraine, Kyiv, Ukraine

stetsyukp@gmail.com

5 A. Pidgorny Institute of Mechanical Engineering
Problems of the National Academy of Sciences
of Ukraine, Kharkiv, Ukraine

maksimovsergey08@gmail.com

SPARSE BALANCED LAYOUT OF ELLIPSOIDS

Abstract. The authors consider the problem of generating spheroidal voids in a three- dimensional domain of complex geometry, taking into account the constraints on the “sparseness” of the placement of voids subject to the system balance. The problem is reduced to the optimized layout of ellipsoids of revolution in a convex container (cylinder or cuboid), taking into account the prohibited zones, constraints on the allowable distances between objects, and the balancing condition. The problem is aimed to maximize the minimum distance between each pair of ellipsoids and each ellipsoid and the boundary of the container. Adjusted quasi-phi-functions for analytical description of the placement constraints are defined. A mathematical model is constructed in the form of a nonlinear programming problem. A solution method is proposed that uses the multistart strategy in combination with smart algorithms to search for feasible and locally optimal solutions. The results of computational experiments are presented.

Keywords: sparse layout, ellipsoids of revolution, phi-function, nonlinear programming, r-algorithm.


FULL TEXT

REFERENCES

  1. Ungson Y., Burtseva L., Garcia-Curiel E., Valdez-Salas B., Flores-Rios B.L., Werner F., Petranovskii V. Filling of irregular channels with round cross-section: Modeling aspects to study the properties of porous materials. Materials. 2018. Vol. 11, N 10. P. 1901.

  2. Stoyan, Y., Yaskov G., Romanova T., Litvinchev I., Yakovlev S., Cant J.M.V. Optimized packing multidimensional hyperspheres: A unified approach. Mathematical Biosciences and Engineering. 2020. Vol. 17, Iss. 6. P. 6601–6630. http://doi.org/10.3934/mbe.2020344.

  3. Blyuss O., Koriashkina L., Kiseleva Е., Molchanov R. Optimal placement of irradiation sources in the planning of radiotherapy: Mathematical models and methods of solving. Computational and Mathematical Methods in Medicine. 2015. Vol. 2015. Article ID 142987. http://doi.org/10.1155/ 2015/142987.

  4. Bezrukov A., Stoyan D. Simulation and statistical snalysis of random packings of ellipsoids. Particle & Particle Systems Characterization. 2007. Vol. 23. P. 388–398.

  5. Choi Y.-K., Chang J.-W., Wang W., Kim M.-S., Elber G. Continuous collision detection for ellipsoids. IEEE Transactions on Visualziation and Computer Graphics. 2009. Vol. 15(2). P. 311–324.

  6. Baule A., Mari R., Bo L., Portal L., Makse H.A. Mean-field theory of random close packings of axisymmetric particles. Nature Communications. 2013. Vol. 2194. P. 1–11.

  7. Pedro G. Lind. Sequential random packings of spheres and ellipsoids. AIP Conference Proceedings. 2009. Vol. 1145. P. 219.

  8. Stoyan Y., Pankratov A., Romanova T. Quasi-phi-functions and optimal packing of ellipses. Journal of Global Optimization. 2016. Vol. 65. P. 283–307. https://doi.org/10.1007/s10898-015-0331-2.

  9. Romanova T.E., Stetsyuk P.I., Chugay A.M., Shekhovtsov S.B. Parallel computing technologies for solving optimization problems of geometric design. Cybernetics and Systems Analysis. 2019. Vol. 55, N 6. P. 894–904. https://doi.org/10.1007/s10559-019-00199-4.

  10. Romanova T., Stoyan Y., Pankratov A., Litvinchev I., Avramov K., Chernobryvko M., Yanchevskyi I., Mozgova I., Bennell J. Optimal layout of ellipses and its application for additive manufacturing. International Journal of Production Research. 2021. Vol. 59, Iss. 2. P. 560–575. https://doi.org/ 10.1080/00207543.2019.1697836.

  11. Grebennik I.V., Kovalenko A.A., Romanova T.E., Urniaieva I.A., Shekhovtsov S.B. Combinatorial configurations in balance layout optimization problems. Cybernetics and Systems Analysis. 2018. Vol. 54, N 2. P. 221–231. https://doi.org/10.1007/s10559-018-0023-2.

  12. Romanova T., Pankratov A., Litvinchev I., Plankovskyy S., Tsegelnyk Y., Shypul O. Sparsest packing of two-dimensional objects. International Journal of Production Research. 2020. https://doi.org/10.1080/ 00207543.2020.1755471.

  13. Romanova T., Litvinchev I., Pankratov A. Packing ellipsoids in an optimized cylinder. European Journal of Operational Research. 2020. Vol. 285, Iss. 2. P. 429–443. https://doi.org/10.1016/ j.ejor.2020.01.051.

  14. Kallrath J. Packing ellipsoids into volume-minimizing rectangular boxes. Journal of Global Optimization. 2017. Vol. 67. Iss. 1–2. P. 151–185. https://doi.org/10.1007/s10898-015-0348-6.

  15. Birgin E.G., Lobato R.D., MartЗnez J.M. Packing ellipsoids by nonlinear optimization. Journal of Global Optimization. 2016. Vol. 65, Iss. 4. P. 709–743. https://doi.org/10.1007/s10898-015-0395-z .

  16. Gardan J. Additive manufacturing technologies: State of the art and trends. Int. J. Prod. Res. 2016. 54(10): 3118.

  17. Lee M., Fang Q., Cho Y., Ryu J., Liu L., Kim D.S. Support-free hollowing for 3D-printing via Voronoi diagram of ellipses. Computer-Aided Design. 2018. 101: 23.

  18. Stoyan Y.G., Romanova T.E., Pankratov O.V., Stetsyuk P.I., Stoian Y.E. Sparse balanced distribution of spherical voids in three-dimensional domains. Kibernetyka ta Systemnyi Analiz. 2021. Vol. 57, N 4. P. 44–55.

  19. Stetsyuk P.I., Romanova T.E., Subota I.O. NLP-problem of packing homothetic ellipses in a rectangular container. Teoriya optymalʹnykh rishenʹ. 2014. P. 139–146.

  20. Stetsyuk P.I. Shor’s -algorithms: theory and practice. In: Optimization Methods and Applications: In Honor of the 80th Birthday of Ivan V. Sergienko. Butenko S., Pardalos P.M., Shylo V. (Eds). Springer International Publishing, 2017. P. 495–520.

  21. Stetsyuk P.I. Theory and software implementations of Shor's r-algorithms. Kibernetika i sistemnyi analiz. 2017. Vol. 53, N 5. P. 43–57.

  22. Pankratov A., Romanova T., Litvinchev I. Packing oblique 3D-objects. Mathematics. 2020. 8(7). 1130. https://doi.org/10.3390/math8071130

  23. Romanova T., Bennell J., Stoyan Y., Pankratov A. Packing of concave polyhedra with continuous rotations using nonlinear optimization. European Journal of Operational Research. 2018. Vol. 268. P. 37–53.




© 2021 Kibernetika.org. All rights reserved.