Cybernetics And Systems Analysis logo
Editorial Board Announcements Abstracts Authors Archive
Cybernetics And Systems Analysis
International Theoretical Science Journal
-->

UDC 517.9
L.A. Vlasenko1, A.G. Rutkas2, V.V. Semenets3, A.O. Chikrii4


1 Kharkiv National University of Radio Electronics,
Kharkiv, Ukraine

lara@rutrus.com

2 Kharkiv National University of Radio Electronics,
Kharkiv, Ukraine

anatoly@rutrus.com

3 Kharkiv National University of Radio Electronics,
Kharkiv, Ukraine

valery.semenets@nure.ua

4 V.M. Glushkov Institute of Cybernetics,
National Academy of Sciences of Ukraine, Kyiv, Ukraine

chik@insyg.kiev.ua

ON A DESCRIPTOR PURSUIT GAME

Abstract. A pursuit differential game in a descriptor system is analyzed. The evolution of the system is described by a linear differential algebraic equation. Solutions of the equation are presented with the help of the formula of variation of constants by the initial data and the control block. We use the technique of set-valued mappings and their selectors, as well as constraints on the functionals defined by the behaviors of the pursuer and evader. The paper contains examples to illustrate the differential game in radio engineering systems. In particular, conflict-controlled transient states in forth-order filters are analyzed.

Keywords: descriptor system, differential algebraic equation, differential game, radio technical filter.


FULL TEXT

REFERENCES

  1. Vlasenko L.A., Rutkas A.G., Semenets V.V. Sequential composition and decomposition of descriptor control systems. Journal of Automation and Information Sciences. 2018. Vol. 50, Iss. 9. P. 60–75. http://doi.org/10.1615/JAutomatInfScien.v50.i9.50.

  2. Vlasenko L.A., Rutkas A.G., Semenets V.V., Chikrii A.A. On the optimal impulse control in descriptor systems. Journal of Automation and Information Sciences. 2019. Vol. 51, Iss. 5. P. 1–15. http://doi.org/10.1615/JAutomatInfScien.v51.i5.10.

  3. Vlasenko L.A., Rutkas A.G., Semenets V.V., Chikrii A.A. Stochastic optimal control of a descriptor system. Cybernetics and Systems Analysis. 2020. Vol. 56, Iss. 2. P. 204–212. http://doi.org/10.1007/s10559-020-00236-7.

  4. Vlasenko L.A., Rutkas A.G., Semenets V.V., Chikrii A.A. Decomposition of descriptor control systems. Cybernetics and Systems Analysis. 2020. Vol. 56, Iss. 6. P. 924–933. https://doi.org/10.1007/s10559-020-00312-y.

  5. Chikrii A.A. Conflict-Controlled Processes. Dordrecht: Springer Science and Business Media. 2013. 424 p. http://doi.org/10.1007/978-94-017-1135-7.

  6. Yong, J. Differential Games: A Concise Introduction. New Jersey, London, Singapore, Beijing, Shanghai, Hong Kong, Taipei, Chennai: World Scientific Publishing, 2015. 337 p. https://doi.org/10.1142/9121.

  7. Wu H.A class of differential game problems for descriptor systems. International journal of systems science. 1992. Vol. 23, Iss. 10. P. 1731–1744. https://doi.org/10.1080/00207729208949417.

  8. Xu H., Mizukami K. On the Isaacs equation of differential games for descriptor systems. J. Optimization Theory and Applications. 1994. Vol. 83, Iss. 2. P. 405–419. https://doi.org/10.1007/BF02190065.

  9. Reddy P.V., Engwerda J.C. Feedback properties of descriptor systems using matrix projectors and applications to descriptor differential games. SIAM Journal on Matrix Analysis and Applications. 2013. Vol. 34, Iss. 2. P. 686–708. https://doi.org/10.1137/100819321.

  10. Vlasenko L.A., Chikrii A.A. The method of resolving functionals for a dynamic game in a Sobolev system. Journal of Automation and Information Sciences. 2014. Vol. 46, Iss. 7. P. 1–11. http://doi.org/10.1615/JAutomatInfScien.v46.i7.10.

  11. Vlasenko L.A., Rutkas A.G. On a differential game in a system described by an implicit differential-operator equation. Differential Equations. 2015. Vol. 51, Iss. 6. P. 798–807. http://doi.org/10.1134/S0012266115060117.

  12. Vlasenko L. Implicit linear time-dependent differential-difference equations and applications. Mathematical Methods in the Applied Sciences. 2000. Vol. 23, Iss. 10. P. 937–948. https://doi.org/10.1002/1099-1476(20000710)23:10<937::AID-MMA144>3.0.CO;2-B.

  13. Chikrii A.A. An analytical method in dynamic pursuit games. Proc. of the Steklov Institute of Mathematics. 2010. Vol. 271, Iss. 1. P. 69–85. https://doi.org/10.1134/ S0081543810040073.

  14. Aubin J.P., Frankowska H. Set-Valued Analysis. Boston-Basel-Berlin: Birkhuser, 1990. 461 p.

  15. Rutkas A., Vlasenko L. Implicit operator differential equations and applications to electrodynamics. Mathematical Methods in the Applied Sciences. 2000. Vol. 23, Iss. 1. P. 1–15. https://doi.org/10.1002/(SICI)1099-1476(20000110)23:1<1::AID-MMA100>3.0.CO;2-5.




© 2021 Kibernetika.org. All rights reserved.