UDC 517.9
APPROXIMATE OPTIMAL CONTROLLER FOR A WEAKLY NONLINEAR
EVOLUTIONARY EQUATION OF PARABOLIC TYPE
Abstract. We consider the optimal control problem for solutions of a parabolic equation
with the right-hand side of the form ε F ( y),
where ε > 0 is a small parameter,
with a coercive cost functional and bounded control. Using the formula of the optimal controller of the undisturbed problem, the form of the approximate controller with switching for the initial problem is substantiated.
Keywords: optimal control, nonlinear parabolic equation, optimal controller.
FULL TEXT
REFERENCES
- Zgurovsky M.Z., Mel’nik V.S. Nonlinear analysis and control of physical processes and fields. Berlin: Springer, 2004. 508 p. https://doi.org/10.1007/978-3-642-18770-4.
- Zgurovsky M.Z., Mel’nik V.S., Kasyanov P.O. Evolution inclusions and variational inequalities for Earth data processing. I. Berlin: Springer, 2011. 247 p. https://doi.org/10.1007/ 978-3-642-13837-9.
- Zgurovsky M.Z., Mel’nik V.S., Kasyanov P.O. Evolution inclusions and variational inequalities for Earth data processing. II. Berlin: Springer, 2011. 274 p. https://doi.org/ 10.1007/ 978-3-642-13878-2.
- Curtain R.F., Pritchard A.J. Ininite-dimensional linear systems theory. Berlin: Springer, 1978. 298 p. https://doi.org/10.1007/BFb0006761.
- Bensoussan A. Regular perturbations in optimal control. Singular Perturbations in Systems and Control. Berlin: Springer, 1983. P. 169–183. https://doi.org/10.1007/978-3-7091-2638-7_6.
- Egorov A.I., Mikhailova T.F. Synthesis of optimal control of a thermal process with limited control. Avtomatika. 1990. N 3. P. 57–61.
- Bublik B.N., Nevidomsky A.I. Synthesis of optimal lumped control for the heat equation. Modeli i sistemy obrabotki informatsii. 1982. N 1. P 78–87.
- Belozerov V.E., Kapustyan V.E. Geometric modal control methods. Kiev: Nauk. dumka, 1999. 260 p.
- Denkowski Z., Mortola S. Asymptotic behavior of optimal solutions to control problems for systems described by differential inclusions corresponding to partial differential equations. Journal of Optimization Theory and Applications. 1993. Vol. 78, N 2. P. 365–391. https://doi.org/10.1007/BF00939675.
- Lavrova O., Mogylova V., Stanzhytskyi O., Misiats O. Approximation of the optimal control problem on an interval with a family of optimization problems on time scales. Nonlinear Dynamics and Systems Theory. 2017. Vol. 17, N 3. P. 303–314.
- Pichkur V.V., Sasonkina M.S. Practical stabilization of discrete control systems. International Journal of Pure and Applied Mathematics. 2012. Vol. 81, N 6. P. 877–884.
- Kapustian O.A., Nakonechnyi O.G., Chikrii A.O. Approximate guaranteed mean square estimates of functionals on solutions of parabolic problems with fast oscillating coefficients under nonlinear observations. Cybernetics and Systems Analysis. 2019. Vol. 55, N 5. P. 785–795. https://doi.org/10.1007/s10559-019-00189-6.
- Kapustyan O.V., Skkundin D.V. Global attractors of one nonlinear parabolic equation. Ukrainian Mathematical Journal. 2003. Vol. 55, N 4. P. 446–455. https://doi.org/10.1023/ B:UKMA.0000010155.48722.f2.
- Kapustyan O.V., Kapustian O.A., Sukretna A.V. Approximate bounded synthesis for distributed systems. Saarbrucken: Lambert academic publishing, 2013. 236 p.
- Kapustyan O.A., Sukretna A.V. Approximate averaged synthesis of the problem of optimal control for a parabolic equation. Ukrainian Mathematical Journal. 2004. Vol. 56, N 10. P. 1653–1664. https://doi.org/10.1007/s11253-005-0141-7.
- Bublik B.N., Kirichenko N.F. Foundations of control theory. Kyiv: Vishcha school, 1975. 328 p.
- Gorban N.V., Kasyanov P.O. On regularity of all weak solutions and their attractors for reaction-diffusion inclusion in unbounded domain. Continuous and distributed systems. Berlin: Springer, 2014. P. 205–220. https://doi.org/10.1007/978-3-319-03146-015.
- Kasyanov P.O., Toscano L., Zadoianchuk N.V. Long-time behaviour of solutions for autonomous evolution hemivariational inequality with multidimensional “reaction- displacement” law. Abstract and Applied Analysis. 2012. Vol. 2012, N 3. P. 1–21. DOI: 10.1155/2012/450984.
- Zgurovsky M., Gluzman M., Gorban N., Kasyanov P., Paliichuk L., Khomenko O. Uniform global attractors for non-autonomous dissipative dynamical systems. Discrete and Continuous Dynamical Systems. Ser. B. 2017. Vol. 22, N 5. P. 2053–2065. https://doi.org/10.3934/ dcdsb.2017120.