Cybernetics And Systems Analysis logo
Editorial Board Announcements Abstracts Authors Archive
Cybernetics And Systems Analysis
International Theoretical Science Journal
-->

UDC 519.6
I.V. Hariachevska1, D.O. Protektor2


1 V.N. Karazin Kharkiv National University, Kharkiv, Ukraine

i.garyachevskaya@karazin.ua

2 V.N. Karazin Kharkiv National University, Kharkiv, Ukraine

d.protector@karazin.ua

COMPUTER SIMULATION SYSTEM FOR NONLINEAR PROCESSES
DESCRIBED BY THE KORTEWEG-DE VRIES–BURGERS EQUATION

Abstract. The article discusses the computer simulation system of nonlinear processes described by the Korteweg-de Vries–Burgers equation. The numerical solution of the Korteweg-de Vries–Burgers differential equation is implemented by the meshless approach using radial basis functions. The computer simulation system uses the following radial basis functions: Gaussian, multiquadric, inverse quadratic, inverse multiquadric, and Wu’s compactly- supported radial function. The solution of the nonlinear one-dimensional non-stationary Korteweg-de Vries–Burgers equation in the computer simulation system is visualized as a three-dimensional surface. The efficiency of the numerical solution in the computer simulation system is demonstrated by a benchmark problem for which numerical solutions were obtained, and the average relative error, average absolute error, and maximum error were calculated.

Keywords: nonlinear one-dimensional Korteweg-de Vries–Burgers equation, computer simulation system, non-stationary boundary-value problem, meshless method, radial basis functions.


FULL TEXT

REFERENCES

  1. Su C.H., Gardner C.S. Korteweg-de Vries equation and generalizations. III. Derivation of the Korteweg-de Vries equation and Burgers equation. Journal of Mathematical Physics. 1969. Vol. 10, N 3. P. 536–539. https://doi.org/10.1063/1.1664873.

  2. Jonson R.S. Shallow water waves on a viscous fluid — the undular bore. The Physics of Fluids. 1972. Vol. 15, N 10. P. 1693–1699. https://doi.org/10.1063/1.1693764/.

  3. Jonson R.S. A nonlinear equation incorporating damping and dispersion. Journal of Fluid Mechanics. 1970. Vol. 42, N 1. P. 49–60. https://doi.org/10.1017/S0022112070001064.

  4. Grad H., Hu P.N. Unified shock profile in a plasma. The Physics of Fluids. 1967. Vol. 10, N 12. P. 2596–2602. https://doi.org/10.1063/1.1762081.

  5. Burgers J.M. Mathematical examples illustrating relations occurring in the theory of turbulent fluid motion. Verhandelingen der Koninklijke Nederlandsche Akademie van Wetenschappen. 1939. Vol. 17, N 2. P. 1–53. https://doi.org/10.1007/978-94-011-0195-0_10.

  6. Boussinesq J. Essai sur la thБorie des eaux courantes. Paris: Imprimerie Nationale, 1877. 770 p.

  7. Kortewege D.J., de Vries G. On the change of form of long waves advancing in a rectangular channel and on a new type of long stationary waves. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science. 1895. Vol. 39, N 240. P. 422–443. https://doi.org/10.1080/14786449508620739.

  8. Demeiray H. Nonlinear waves in a thick-walled viscoelastic tube filled with an inviscid fluid. International Journal of Engineering Science. 1998. Vol. 36, N 3. P. 345–357. https://doi.org/10.1016/S0020-7225(97)00056-6.

  9. Antar N., Demiray H. Nonlinear waves in an inviscid fluid contained in a prestressed viscoelastic thin tube. Zeitschrift fr angewandte Mathematik und Physik ZAMP. 1997. Vol. 48. P. 325–340. https://doi.org/10.1007/s000330050034.

  10. Zaki S.I. A quintic B-spline finite elements scheme for the KdVB equation. Computer Methods in Applied Mechanics and Engineering. 2000. Vol. 188, Iss. 1–3. P. 121–134. https://doi.org/10.1016/ S0045-7825(99)00142-5.

  11. El-Danaf T.S. Septic B-spline method of the Kortewege-de Varies–Burger’s equation. Communications in Nonlinear Science and Numerical Simulation. 2008. Vol. 13, Iss. 3. P. 554–566. https://doi.org/10.1016/j.cnsns.2006.05.010.

  12. Kaya D. An application of the decomposition method for the KdVB equation. Applied Mathematics and Computation. 2004. Vol. 152, N 1. P. 279–288. https://doi.org/10.1016/S0096-3003(03)00566-6.

  13. Soliman A.A. A numerical simulation and explicit solutions of KdV–Burgers’ and Lax’s seventh-order KdV equations. Chaos, Solitons & Fractals. 2006. Vol. 29, N 2. P. 294–302. https:// doi.org/10.1016/j.chaos.2005.08.054.

  14. Kolodyazhny V.M., Lisin D.A. Meshless method for solving non-stationary heat conduction problems using atomic radial basis functions. Kibernetika i sistemnyj analiz. 2013. Vol. 49, N 3. P. 124–131.

  15. Protector D.O., Lisin D.A., Lisina O.Yu. Numerical analysis of solutions of two-dimensional heat conduction problems according to a gridless scheme using fundamental and general solutions. Prikladni pitannya matematychnogo modelyuvannya. 2019. Vol. 2, N 1. P. 98–111. https://doi.org/ 10.32782/2618-0340-2019-3-8.

  16. Garyachevska I.V., Protector D.O. Computer simulation system for numerical solution of one-dimensional non-stationary Burgers equation. Visnyk Kharkivsʹkoho natsionalʹnoho universytetu imeni V.N. Karazina. Ser. "Mathematical modeling. Information Technology. Automated control systems".2019. Vol. 43. P. 11–19. https://doi.org/10.26565/2304-6201-2019-43-02.

  17. Xie H., Zhou J., Jiang Z., Guo X. Approximations for Burgers’ equations with C-N scheme and RBF collocation methods. Journal of Nonlinear Sciences and Applications. 2016. Vol. 9, Iss. 6. P. 3727–3734. http://dx.doi.org/10.22436/jnsa.009.06.23.

  18. Kansa E.J. Multiquadrics — A scattered data approximation scheme with applications to computational fluid-dynamics — I surface approximations and partial derivative estimates. Computers & Mathematics with Applications. 1990. Vol. 19, Iss. 8–9. P. 127–145. https://doi.org/10.1016/0898-1221(90)90270-T.

  19. Hon Y.C., Mao X.Z. An efficient numerical scheme for burgers equation. Applied Mathematics and Computation. 1998. Vol. 95, N 1. P. 37–50. https://doi.org/10.1016/S0096-3003(97)10060-1.

  20. Wu Z. Compactly supported positive definite radial functions. Advances in Computational Mathematics. 1995. Vol. 4. P. 283–292. https://doi.org/10.1007/BF03177517.

  21. Montoya C. Inverse source problems for the Korteweg-de Vries–Burgers equation with mixed boundary conditions. Journal of Inverse and Ill-posed Problems. 2019. Vol. 27, N 6. P. 777–794. https://doi.org/10.1515/jiip-2018-0108.

  22. Langtangen H.P., Linge S. Finite difference computing with PDEs. Cham: Springer International Publishing, 2017. 507 p. https://doi.org/10.1007/978-3-319-55456-3.

  23. Sergienko I.V., Khimich A.N., Yakovlev M.F. Methods for obtaining reliable solutions to systems of linear algebraic equations. Kibernetika i sistemnyj analiz. 2011. Vol. 47, N 1. P. 68–80.




© 2021 Kibernetika.org. All rights reserved.