UDC 517.988
SOLVING THE HERMITE INTERPOLATION PROBLEM
IN A FINITE-DIMENSIONAL EUCLIDEAN SPACE
Abstract. We consider the solution of the Hermite interpolation problem in the Euclidean space in the case where the values of the multivariable function and the values of its first-order Gato derivatives at the interpolation nodes are given. The problem is shown to have a unique solution of the minimum norm in the case of under-determinacy. The conditions of invariant solvability and uniqueness of the problem solution are obtained.
Keywords: Hermite interpolation polynomial, Gato differential, Hilbert space, Euclidean space, minimum norm.
FULL TEXT
REFERENCES
- Porter W.A. An overview of polinomic system theory. Proc. IEEE. Special Issue on System Theory. 1976. Vol. 64, N 1. P. 18โ26.
- Babenko K.I. Fundamentals of Numerical Analysis [in Russian]. Moscow; Izhevsk: Research Center Regular and Chaotic Dynamics, 2002. 848 p.
- Kergin P. Interpolation of ะก functions. Thesis: University of Toronto, 1978.
- Chung K.C., Yao T.H. On latticies admitting unique Lagrange representations. SIAM J. Numer. Anal. 1977. Vol. 14, Iss. 4. P. 735โ743.
- Makarov V.L., Khlobystov V.V. Fundamentals of the theory of polynomial operator interpolation. Kyiv: Institute of Mathematics of the National Academy of Sciences of Ukraine, 1999. Vol. 24. 278 p.
- Hlobystov V.V., Kashpur O.F. Hermitian operator interpolant in Hilbert space, which is asymptotically exact on polynomials. Bulletin of the University of Kyiv. Ser. physical-math. science. 2005. N 2. P. 437โ448.
- Egorov A.D., Sobolevsky P.I., Yanovich L.A. Approximate methods for calculating path integrals. Minsk: Nauka i tekhnika, 1985. 310 p.
- Gikhman I.I., Skorokhod A.V. Theory of random processes [in Russian]. T. 1. Moscow: Nauka, 1971. 664 p.
- Makarov V.L., Khlobystov V.V., Yanovich L.A. Methods of operator interpolation. Kyiv: Institute of Mathematics of the National Academy of Sciences of Ukraine, 2010. Vol. 83. 516 p.
- Gantmakher F.R. Matrix theory [in Russian]. Moscow: Fizmatlit, 2010. 558 p.