UDC 519.65
1 Ya.S. Pidstryhach Institute for Applied Problems of Mechanics and Mathematics, National Academy of Sciences of Ukraine, Lviv, Ukraine
Petro.Malachivskyy@gmail.com
|
2 Ya.S. Pidstryhach Institute for Applied Problems of Mechanics and Mathematics, National Academy of Sciences of Ukraine, Lviv, Ukraine
levkom@gmail.com
|
CHEBYSHEV APPROXIMATION OF MULTIVARIABLE FUNCTIONS
BY THE RATIONAL EXPRESSION WITH THE CONDITION
Abstract. A method for constructing the Chebyshev approximation by the rational expression
of the multivariable functions with the interpolation condition is proposed.
The idea of the method is based on the construction of the ultimate mean-power approximation
by a rational expression with the interpolation condition in the
norm of space Lp at p → ∞.
To construct such an approximation, an iterative scheme based on the least squares method
with two variable weight functions is used. One weight function provides the construction
of a mean-power approximation with the interpolation condition, and the second — the specification of the parameters of a rational expression according to the scheme of its linearization. The convergence of the method provides an original way of sequential refinement of the values of weight functions, which takes into account the results of the approximation of previous iterations. The results of test examples confirm the rapid convergence of the proposed method of constructing the Chebyshev approximation by a rational expression with a condition.
Keywords: Chebyshev approximation by the rational expression, Chebyshev approximation with the condition, multivariable functions, mean-power approximation, least squares method, variable weight function.
full text
REFERENCES
- Collatz L., Krabs W. Approximationstheorie. Tschebyscheffsche approximation mit anwendungen. Teubner Studienbucher Mathematik (TSBMA). Vieweg+Teubner Verlag Wiesbaden, 1973. P. 209. https://doi.org/10.1007/978-3-322-94885-4.
- Popov B.A., Tesler G.S. Approximation of functions for technical applications [in Russian]. Kyiv: Nauk. Dumka. 1980. 352 p.
- Collatz L., Albrecht Yu. Problems in applied mathematics [in Russian]. Moscow: Mir, 1978. 167 p.
- Skopetskii V.V., Malachivskii P.S. Chebyshev approximation of functions by the sum of a polynomial and an expression with a nonlinear parameter and endpoint interpolation. Cybernetics and Systems Analysis. 2009. N 1. Р. 58–68. https://doi.org/10.1007/s10559- 009-9078-4.
- Verlan A.F., Adbusadarov B.B., Ignatenko A.A., Maksimovich N.A. Methods and devices for the interpretation of experimental dependences in the study and control of energy processes [in Russian]. Kyiv: Nauk. Dumka, 1993. 208 p.
- Rudtsch S., von Rohden C. Calibration and self-validation of thermistors for high-precision temperature measurements. Measurement. 2015. Vol. 76. P. 1–6. https://doi.org/10.1016/J.MEASUREMENT.2015.07.028 .
- Malachivskyy P.S., Skopetskyi V.V. Continuous and smooth minimax spline approximation [in Ukrainian]. Kyiv: Nauk. Dumka, 2013. 270 с.
- Charles B. Dunham C.B. Rational approximation with a vanishing weight function and with a fixed value at zero. Mathematics of Computation. 1976. Vol. 30, N 133. P. 45–47.
- Melnychok L.S., Popov B.A. The best approximation of tabular functions with a condition. Algorithms and programs for calculating functions on ECM. Kyiv: Institute of Cybernetics, 1977. Iss. 4. P. 189–200.
- Kalenchuk-Porkhanova A.A. Best Chebyshev approximation of functions of one and many variables. Cybernetics and Systems Analysis. 2009. N 6. P. 988–996. https://doi.org/10.1007/s10559-009-9163-8.
- Malachivskyy P.S., Pizyur Ya.V., Malachivsky R.P. Chebyshev approximation by the rational expression of functions of many variables. Cybernetics and Systems Analysis. 2020. Vol. 56, N 5. Р. 811–819. https://doi.org/10.1007/s10559-020-00302-0.
- Filip S.-I., Nakatsukasa Y., Trefethen L.N., Beckermann B. Rational minimax approximation via adaptive barycentric representations. URL: https://arxiv.org/pdf/1705.10132.
- Nakatsukasa Y., Ste O., Trefethen L.N. The AAA algorithm for rational approximation. SIAM J. Sci. Comput. 2018. Vol. 40, N 3. Р. A1494–A1522. https://doi.org/10.1137/16M1106122.
- Malachivskyy P., Melnychok L., Pizyur Ya. Chebyshev approximation of multivariable functions with the interpolation. Mathematical Modeling and Computing. 2022. Vol. 9, N 3. Р. 757–766. https://doi.org/10.23939/mmc2022.03.757 .
- Malachivskyy P.S., Melnychok L.S., Pizyur Y.V. Chebyshev approximation of the functions of many variables with the condition. IEEE 15th International Conference on Computer Sciences and Information Technologies (CSIT). Zbarazh, Ukraine. 2020. P. 54–57. https://doi.org/10.1109/CSIT49958.2020.9322026.
- Malachivskyy P.S., Pizyur Ya.V., Malachivskyi R.P., Ukhanska O. M. Chebyshev approximation of functions of several variables. Cybernetics and Systems Analysis. 2020. Vol. 56, N 1. Р. 118–125. https://doi.org/10.1007/s10559-020-00227-8.
- Malachivskyy P.S., Pizyur Y.V. Solving problems in the Maple environment. Lviv: RASTR-7, 2016. 282 p.
- Ремез Е.Я. Основы численных методов чебышевского приближения. Киев: Наук. думка, 1969. 623 с.
- Berljafa M., Gttel S. The RKFIT algorithm for nonlinear rational approximation. SIAM J. Sci. Comput. 2017. Vol. 39, N 5. P. A2049–A2071. https://doi.org/10.1137/15M1025426.
- Gonnet P., Pachon R., Trefethen L.N. Robust rational interpolation and least-squares. Electronic Transactions on Numerical Analysis. 2011. N 38. P. 146–167.
- Pachon R., Gonnet P., van Deun J. Fast and stable rational interpolation in roots of unity and Chebyshev points. SIAM J. on Numerical Analysis. 2012. Vol. 50, N 3. P. 1713–1734. https://doi.org/10.1137/100797291.