Cybernetics And Systems Analysis logo
Editorial Board Announcements Abstracts Authors Archive
Cybernetics And Systems Analysis
International Theoretical Science Journal
-->

UDC 517.9, 519.6
G.V. Sandrakov1, S.I. Lyashko2, V.V. Semenov3


1 Taras Shevchenko National University of Kyiv, Kyiv, Ukraine

gsandrako@gmail.com

2 Taras Shevchenko National University of Kyiv, Kyiv, Ukraine

lyashko.serg@gmail.com

3 Taras Shevchenko National University of Kyiv, Kyiv, Ukraine

semenov.volodya@gmail.com

SIMULATION OF FILTRATION PROCESSES FOR INHOMOGENEOUS MEDIA
AND HOMOGENIZATION

Abstract. The investigation of the dynamic processes of filtration in porous media is essential when planning the use of underground resources and simulation of systems in ecology. Porous periodic media, formed by a large number of “blocks” with low permeability, and separated by a connected system of “faults” with high permeability, will be considered here. Taking into account the structure of such media in modeling leads to the dependence of the filtration equations and their coefficients on a small parameter characterizing the microscale of the porous medium and the permeability of the blocks. Thus, initial boundary value problems for nonstationary equations of filtration in such porous media are considered. Homogenized problems (whose solutions determine approximate asymptotics for solutions of the original problems) are presented. The homogenized problems have the form of initial boundary value problems for integro-differential equations in convolutions. Estimates for the accuracy of the asymptotics and relevant convergence theorem are discussed. Statements about the solvability and regularity for the problems and the homogenized problems are proved. The statements are optimal and do not depend on the parameters.

Keywords: homogenized problems, parabolic problems, approximate asymptotics, solvability, a priori estimates, Laplace transforms.


full text

REFERENCES

  1. Lyashko I.I. Solution of filtration problems by the method of summary representations [in Russian]. Kyiv: Kyiv un-ty, 1963. 175 p.

  2. Lyashko I.I., Velikovanenko I.M. Numerical-analytical solution of boundary value problems of filtration theory [in Russian]. Kyiv: Nauk. dumka, 1973. 264 p.

  3. Lyashko I.I., Mistetsky G.E., Oleinik A.Ya. Calculation of filtration in the zone of hydraulic structures [in Russian]. Kyiv: Budivelnik, 1977. 152 p.

  4. Gladky A.V., Lyashko I.I., Mistetsky G.E. Algorithmization and numerical calculation of filtration schemes [in Russian]. Kyiv: Vishcha shk., 1981. 287 p.

  5. Lyashko I.I., Demchenko L.I., Mistetsky G.E. Numerical solution of problems of heat and mass transfer in porous media [in Russian]. Kyiv: Nauk. dumka, 1991. 261 p.

  6. Lyashko S.I., Semenov V.V. Controllability of linear distributed systems in classes of generalized actions. Cybernetics and Systems Analysis. 2001. Vol. 37, N 1. P. 13–32. https://doi.org/10.1023/A:1016607831284.

  7. Tymoshenko A., Klyushin D., Lyashko S. Optimal control of point sources in Richards–Klute equation. Advances in Intelligent Systems and Computing. 2019. Vol. 754. P. 194–203. https://doi.org/10.1007/978-3-319-91008-6_20.

  8. Sandrakov G.V., Lyashko S.I., Bondar E.S., Lyashko N.I. Modeling and optimization of microneedle systems. Journal Automation and Information Sciences. 2019. Vol. 51, Iss. 6. P. 1–11. https://doi.org/10.1615/JAutomatInfScien.v51.i6.10.

  9. Sandrakov G.V., Lyashko S.I., Bondar E.S., Lyashko N.I., Semenov V.V. Modeling of configurations formed when using microneedle systems. Journal Automation and Information Sciences. 2020. Vol. 52, Iss. 12. P. 1–11. https://doi.org/10.1615/JAutomatInfScien.v52.i12.10.

  10. Semenov V.V. Solvability of a parabolic transmission problem with the condition of a generalized proper lumped source. Differential Equations. 2005. Vol. 41, N 6. P. 878–886. https://doi.org/10.1007/s10625-005-0227-x .

  11. Semenov V.V. Modified extragradient method with Bregman divergence for variational inequalities. Journal of Automation and Information Sciences. 2018. Vol. 50, Iss. 8. P. 26–37. https://doi.org/10.1615/JAutomatInfScien.v50.i8.30.

  12. Sandrakov G.V. The homogenization of nonstationary equations with contrast coefficients. Doklady Mathematics. 1997. Vol. 56, Iss. 1. P. 586–589.

  13. Sandrakov G.V. Homogenization of parabolic equations with contrasting coefficients. Izvestiya: Mathematics. 1999. Vol. 63, Iss. 5. P. 1015–1061. https://doi.org/10.1070/IM1999v063n05ABEH000264.

  14. Sandrakov G.V. Multiphase homogenized models for diffusion in highly nonhomogeneous media. Doklady Mathematics. 2004. Vol. 70, Iss. 1. P. 507–511.

  15. Sandrakov G.V. Multiphase models of nonstationary diffusion arising from homogenization. Computational Mathematics and Mathematical Physics. 2004. Vol. 44, Iss. 10. P. 1741–1756.

  16. 16. Sandrakov G.V. Multiphase homogenized diffusion models for problems with several parameters. Izvestiya: Mathematics. 2007. Vol. 71, Iss. 6. P. 1193–1252. https://doi.org/10.1070/IM2007v071n 06ABEH002387.

  17. Duvaut G., Lions J.-L. Les inБquations en mБcanique et en physique. Paris: Dunod, 1972. 387 p.

  18. Agranovich M.S., Vishik M.I. Elliptic problems with a parameter and parabolic problems of general type. Russian Math. Surveys. 1964. Vol. 19, Iss. 63. P. 53–157. https://doi.org/10.1070/RM1964v019n03ABEH001149.

  19. Bakhvalov N.S., Panasenko G.P. Homogenization: Averaging processes in periodic media. Dordrecht: Kluwer, 1989. 366 p. https://doi.org/10.1007/978-94-009-2247-1.

  20. Bensoussan A., Lions J.-L., Papanicolau G. Asymptotic analysis for periodic structures. Amsterdam: North-Holland, 1978. 700 p.

  21. Sanchez-Palencia E. Non homogeneous media and vibration theory. Lecture Notes in Physics. Vol. 127. New York: Springer-Verlag, 1980. 398 p. https://doi.org/10.1007/3-540-10000-8.

  22. Sandrakov G.V. Homogenization of variational inequalities for obstacle problems. Sbornik Mathematics. 2005. Vol. 196, Iss. 3–4. P. 541–560. https://doi.org/10.1070/SM2005v196n04ABEH000891.

  23. Sandrakov G.V. Homogenization of variational inequalities for non-linear diffusion problems in perforated domains. Izvestiya: Mathematics. 2005. Vol. 69, Iss. 5. P. 1035–1059. https://doi.org/10.1070/IM2005v069n05ABEH002287.

  24. Sandrakov G.V. Homogenization of non-stationary Stokes equations with viscosity in a perforated domain. Izvestiya: Mathematics. 1997. Vol. 61, Iss. 1. P. 113–141. https://doi.org/10.1070/IM1997v061n01ABEH000107.

  25. Sandrakov G.V. The influence of viscosity on oscillatory phenomena in linearized hydrodynamics. Doklady Mathematics. 2002. Vol. 66, Iss. 2. P. 241–244.

  26. Sandrakov G.V. The influence of viscosity on oscillations in some linearized problems of hydrodynamics. Izvestiya: Mathematics. 2007. Vol. 71, Iss. 1. P. 97–148. https://doi.org/10.1070/IM2007v071n01ABEH002352.

  27. Jager W., Rannacher R., Warnatz J. (Eds.) Reactive flows, diffusion and transport: From experiments via mathematical modeling to numerical simulation and optimization. Berlin: Springer-Verlag, 2007. 686 p. https://doi.org/10.1007/978-3-540-28396-6.

  28. Mielke A., Reichelt S., Thomas M. Two-scale homogenization of nonlinear reaction-diffusion systems with slow diffusion. Netw. Heterog. Media. 2014. Vol. 9, Iss. 2. P. 353–382. https://doi.org/10.3934/nhm.2014.9.353.

  29. Sweijen T., Van Duijn C.J., Hassanizadeh S.M. A model for diffusion of water into a swelling particle with a free boundary: Application to a super absorbent polymer particle. Chemical Engineering Science. 2017. Vol. 172. P. 407–413. https://doi.org/10.1016/j.ces.2017.06.045.

  30. Jager W., Woukeng L. Homogenization of Richards’ equations in multiscale porous media with soft inclusions. J. Differential Equations. 2021. Vol. 281. P. 503–549. https://doi.org/10.1016/j.jde.2021.02.012.

  31. Garttner S., Frolkovic P., Knabner P., Ray N. Efficiency and accuracy of micro-macro models for mineral dissolution. Water Resources Research. 2020. Vol. 56, Iss. 8. https://doi.org/10.1029/2020WR027585.

  32. Garttner S., Frolkovic P., Knabner P., Ray N. Efficiency of micro-macro models for reactive two-mineral systems. Multiscale Modeling and Simulation. 2022. Vol. 20, Iss. 1. P. 433–461. https://doi.org/10.1137/20M1380648.

  33. Sandrakov G.V. Averaging principles for equations with rapidly oscillating coefficients. Math. USSR Sb. 1991. Vol. 68, Iss. 2. P. 503–553. https://doi.org/10.1070/SM1991v068n02ABEH002111.

  34. Diaz J.I., Gomez-Castro D., Shaposhnikova T.A., Zubova M.N. A nonlocal memory strange term arising in the critical scale homogenization of a diffusion equation with dynamic boundary conditions. Electron. J. Differ. Equations. 2019. Vol. 77. P. 1–13.

  35. Diaz J.I., Gomez-Castro D., Shaposhnikova T.A., Zubova M.N. Classification of homogenized limits of diffusion problems with spatially dependent reaction over critical-size particles. Applicable Analysis. 2019. Vol. 98. P. 232–255. https://doi.org/10.1080/00036811.2018.1441997.

  36. Zubova M.N., Shaposhnikova T.A. Homogenization of a boundary-value problem in a domain perforated by cavities of arbitrary shape with a general nonlinear boundary condition on their boundaries: The case of critical values of the parameters. J. Mathematical Sciences. 2020. Vol. 244, Iss. 2. P. 235–253. https://doi.org/10.1007/s10958-019-04616-z .

  37. Benes B., Pazanin I. Homogenization of degenerate coupled transport processes in porous media with memory terms. Math. Methods in the Applied Sciences. 2019. Vol. 42, Iss. 18. P. 6227–6258. https://doi.org/10.1002/mma.5718.

  38. Mielke A., Reichelt S. Traveling fronts in a reaction–diffusion equation with a memory term. J. Dynamics and Differential Equations. 2022. https://doi.org/10.1007/s10884-022-10133-6.

  39. Sandrakov G.V., Hulianytskyi A.L. Solvability of homogenized problems with convolutions for weakly porous media. J. Numerical and Applied Mathematics. 2020. N 2 (134). P. 59–70. https://doi.org/10.17721/2706-9699.2020.2.04.

  40. Sandrakov G.V., Hulianytskyi A.L., Semenov V.V. Modeling of filtration processes in periodic porous media. Modeling, Control and Information Technologies. 2021. Vol. 5. P. 90–93. https://doi.org/10.31713/MCIT.2021.28.

  41. Arbogast T., Douglas J., Hornung U. Derivation of the double porosity model of single phase flow via homogenization theory. SIAM J. Math. Anal. 1990. Vol. 21, Iss. 4. P. 823–836. https://doi.org/10.1137/0521046.

  42. Bakhvalov N.S., Eglit M.E. The limiting behaviour of periodic media with soft-modular inclusions. Computational Math. and Mathematical Physics. 1995. Vol. 35, Iss. 6. P. 719–729.




© 2023 Kibernetika.org. All rights reserved.