Cybernetics And Systems Analysis logo
Editorial Board Announcements Abstracts Authors Archive
Cybernetics And Systems Analysis
International Theoretical Science Journal
-->

UDC 519.2
L.S. Stoikova1


1 Kyiv, Ukraine

stojk@ukr.net

ALTERNATIVE PROOF OF GAUSS’S INEQUALITIES

Abstract. A clear formulation of Gauss’s inequalities is given. A transparent proof based on the well-known fundamental results is presented. In this proof, a simple way of constructing a partition of the domain of the problem parameters is proposed. An explicit form of the extremum distribution functions is also formulated.

Keywords: extreme values, linear functionals, classes of unimodal distribution functions.


full text

REFERENCES

  1. Karlin S., Stadden W. Chebyshev systems and their application in analysis and statistics [Russian translation]. Moscow: Nauka, 1976. 568 p.

  2. Barlow R., Proshan F. Mathematical theory of reliability [Russian translation]. Moscow: Sov. radio, 1969. 488 с.

  3. Johnson N.L., Rogers C.A. The moment problem for unimodal distribution. Ann. Math. Stat. 1951. Vol. 22. P. 433–439.

  4. Mulholland H.P., Rogers C.A. Representation theorems for distribution functions. Proc. London Math. Soc. 1958. Vol. 3, N 8. P. 177–223.

  5. Krein M.G., Nudelman A.A. The Markov moment problem and extremal problems [in Russian]. Moscow: Nauka, 1973. 551 p.

  6. Stoikova L.S., Kovalchuk L.V. Exact estimates for some linear functionals of unimodal distribution functions under incomplete information. Cybernetics and Systems Analysis. 2019. Vol. 55, N 6. P. 914–925. https://doi.org.10.1007.s10559-019-00201-z .

  7. Gauss C.F. Theoria combination observation. Werk. (1880). N 4, P. 10–11. (Goettingen).

  8. Camp B.H. A new generalization of Thebyscheff’s statistical inequality. Bull. Amer. Math. Soc. 1992. Vol. 28. P. 427–432.

  9. Meidel B. Sur une problem due calcul des probabilites et les statistiques mathematiques. C.R. Acad. Sci., 1922. Vol. 175. P. 806–808.

  10. Frechet M. Generalities sur probabilities. Elements aleatoires (2 nd ed.). Borel Senes.Traite du calcul des probabilities et de ses applications, Div. 1, Pt. III, Vol. 1. Gauthier–Villars, Paris.

  11. Stoikova L.S. Exacte estimates of the probability of a non-negative unimodal random value hitting special intervals under incomplete information. Cybernetics and Systems Analysis. 2021. Vol. 57, N 2. P. 264–267. https://doi.org.10.1007.s10559-021-00351-z .




© 2023 Kibernetika.org. All rights reserved.