UDC 519.2
ALTERNATIVE PROOF OF GAUSS’S INEQUALITIES
Abstract. A clear formulation of Gauss’s inequalities is given. A transparent proof based on the well-known fundamental results is presented. In this proof, a simple way of constructing a partition of the domain of the problem parameters is proposed. An explicit form of the extremum distribution functions is also formulated.
Keywords: extreme values, linear functionals, classes of unimodal distribution functions.
full text
REFERENCES
- Karlin S., Stadden W. Chebyshev systems and their application in analysis and statistics [Russian translation]. Moscow: Nauka, 1976. 568 p.
- Barlow R., Proshan F. Mathematical theory of reliability [Russian translation]. Moscow: Sov. radio, 1969. 488 с.
- Johnson N.L., Rogers C.A. The moment problem for unimodal distribution. Ann. Math. Stat. 1951. Vol. 22. P. 433–439.
- Mulholland H.P., Rogers C.A. Representation theorems for distribution functions. Proc. London Math. Soc. 1958. Vol. 3, N 8. P. 177–223.
- Krein M.G., Nudelman A.A. The Markov moment problem and extremal problems [in Russian]. Moscow: Nauka, 1973. 551 p.
- Stoikova L.S., Kovalchuk L.V. Exact estimates for some linear functionals of unimodal distribution functions under incomplete information. Cybernetics and Systems Analysis. 2019. Vol. 55, N 6. P. 914–925. https://doi.org.10.1007.s10559-019-00201-z .
- Gauss C.F. Theoria combination observation. Werk. (1880). N 4, P. 10–11. (Goettingen).
- Camp B.H. A new generalization of Thebyscheff’s statistical inequality. Bull. Amer. Math. Soc. 1992. Vol. 28. P. 427–432.
- Meidel B. Sur une problem due calcul des probabilites et les statistiques mathematiques. C.R. Acad. Sci., 1922. Vol. 175. P. 806–808.
- Frechet M. Generalities sur probabilities. Elements aleatoires (2 nd ed.). Borel Senes.Traite du calcul des probabilities et de ses applications, Div. 1, Pt. III, Vol. 1. Gauthier–Villars, Paris.
- Stoikova L.S. Exacte estimates of the probability of a non-negative unimodal random value hitting special intervals under incomplete information. Cybernetics and Systems Analysis. 2021. Vol. 57, N 2. P. 264–267. https://doi.org.10.1007.s10559-021-00351-z .