Cybernetics And Systems Analysis logo
Editorial Board Announcements Abstracts Authors Archive
Cybernetics And Systems Analysis
International Theoretical Science Journal
-->

UDC 517.988
V.V. Semenov1, S.V. Denisov2


1 Taras Shevchenko National University of Kyiv, Kyiv, Ukraine

semenov.volodya@gmail.com

2 Taras Shevchenko National University of Kyiv, Kyiv, Ukraine

sireukr@gmail.com

IMPULSE TRAJECTORY AND FINAL CONTROLLABILITY
OF PARABOLIC-HYPERBOLIC SYSTEMS

Abstract. The authors investigate the existence and uniqueness of generalized solutions of boundary-value problems for equations of the parabolic-hyperbolic type with generalized functions of finite order on the right-hand sides. The motivation is the analysis of the problems of trajectory and final controllability of systems described by these boundary-value problems and subjected to concentrated influences of the impulse or point type. The systems can be considered «toy models» of the interaction of a solid body and a liquid. A priori inequalities in negative norms are obtained. The theorems of existence and uniqueness of generalized solutions and theorems of trajectory and final controllability of systems with singular influences are proved.

Keywords: controllability, equations of parabolic-hyperbolic type, a priori inequalities, negative norms, generalized solution, impulse control.


full text

REFERENCES

  1. Butkovsky A.G., Pustylnikov L.M. The theory of mobile control systems with distributed parameters [in Russian]. Moscow: Nauka, 1980. 384 p.

  2. Lyashko S.I., Klyushin D.A., Trigub A.S. Modeling and optimization of underground mass transfer [in Russian]. Kiev: Nauk. dumka, 1998. 235 p.

  3. Miller B.M., Rubinovich E.Ya. Optimization of dynamic systems with impulse control [in Russian]. Moscow: Nauka, 2005. 429 p.

  4. Lyashko S.I., Klyushin D.A., Nomirovsky D.A., Semenov V.V. Identification of age-structured contamination sources in ground water. In: Optimal Control of Age-Structured Populations in Economy, Demography, and the Environment. Boucekkine R., Hritonenko N., Yatsenko Y. (Eds.). London; New York: Routledge, 2013. P. 277–292.

  5. Lyons J.-L. Optimal control of systems described by partial differential equations [Russian translation]. Moscow: Mir, 1972. 414 p.

  6. Lyons J.-L. Control of singular distributed systems [Russian translation]. Moscow: Nauka, 1987. 368 p.

  7. Berezansky Yu.M. Expansion in eigenfunctions of self-adjoint operators [in Russian]. Kyiv: Nauk. dumka, 1965. 800 p.

  8. Didenko V.P. On boundary-value problems for multidimensional hyperbolic equations with degeneration. DAN USSR. 1972. Vol. 205, N 4. P. 763–766.

  9. Lyashko I.I., Didenko V.P., Tsitritsky O.E. Noise filtering [in Russian]. Kyiv: Nauk. dumka, 1979. 232 p.

  10. Lyashko S.I. Generalized optimal control of linear systems with distributed parameters. Boston; Dordrecht; London: Kluwer Academic Publishers, 2002. 466 p.

  11. Semenov V.V. Solvability of a parabolic transmission problem with the condition of a generalized proper lumped source. Differential Equations. 2005. Vol. 41. P. 878–886. https://doi.org/10.1007/ s10625-005-0227-x .

  12. Anikushyn A.V., Hulianytskyi A.L. Generalized solvability of parabolic integro-differential equations. Differential Equations. 2014. Vol. 50. P. 98–109. https://doi.org/10.1134/S0012266114010133.

  13. Anikushyn A.V., Nomirovs’kyi D.A. Generalized solutions for linear operators with weakened a priori inequalities. Ukr. Math. J. 2011. Vol. 62. P. 1175–1186. https://doi.org/10.1007/ s11253-011-0435-x .

  14. Tymchyshyn I.B., Nomirovskii D.A. Generalized solvability of a parabolic model describing transfer processes in domains with thin inclusions. Differential Equations. 2021. Vol. 57. P. 1053–1062. https://doi.org/10.1134/S0012266121080097.

  15. Lyashko I.I., Lyashko S.I., Semenov V.V. Control of pseudo-hyperbolic systems by concentrated impacts. Journal of Automation and Information Sciences. 2000. Vol. 32, Iss. 12. P. 23–36. https://doi.org/10.1615/JAutomatInfScien.v32.i12.40.

  16. Denisov S.V., Semenov V.V. Optimization and generalized solution in conjugation problems of parabolic systems. Journal of Automation and Information Sciences. 2005. Vol. 37, Iss. 1. P. 47–61. https://doi.org/10.1615/JAutomatInfScien.v37.i1.60 .

  17. Anikushyn A.V. Generalized optimal control for systems described by linear integro-differential equations with nonnegative definite integral operators. Journal of Automation and Information Sciences. 2014. Vol. 46, Iss. 6, P. 58–67. https://doi.org/10.1615/JAutomatInfScien.v46.i6.60.

  18. Lyashko S.I., Semenov V.V. Controllability of linear distributed systems in classes of generalized actions. Cybernetics and Systems Analysis. 2001. Vol. 37, N 1. P. 13–32. https://doi.org/10.1023/A:1016607831284 .

  19. Lyashko S.I., Nomirovskii D.A., Sergienko T.I. Trajectory and final controllability in hyperbolic and pseudohyperbolic systems with generalized actions. Cybernetics and Systems Analysis. 2001. Vol. 37, N 5. P. 756–763. https://doi.org/10.1023/A:1013871026026.

  20. Lyashko S.I., Semenov V.V., Sergienko T.I. Controllability and optimization of systems of pseudohyperbolic type. Cybernetics and Systems Analysis. 2002. Vol. 38, N 4. P. 586–596. https://doi.org/10.1023/A:1021162303764.

  21. Semenov V.V., Semenova N.V. A vector problem of optimal control in a Hilbert space. Cybernetics and Systems Analysis. 2005. Vol. 41, N 2. P. 255–266. https://doi.org/10.1007/ s10559-005-0058-z .

  22. Lyashko S.I. Numerical solution of pseudoparabolic equations. Cybernetics and Systems Analysis. 1995. Vol. 31, N 5. P. 718–722. https://doi.org/10.1007/BF02366321 .

  23. Nomirovskii D.A. Approximate method for solving the boundary value problem for a parabolic equation with inhomogeneous transmission conditions of nonideal contact type. Computational Mathematics and Mathematical Physics. 2006. Vol. 46. P. 995–1006. https://doi.org/10.1134/S096554250606008X .

  24. Semenov V.V. Modified extragradient method with Bregman divergence for variational inequalities. Journal of Automation and Information Sciences. 2018. Vol. 50, Iss. 8. P. 26–37. https://doi.org/10.1615/JAutomatInfScien.v50.i8.30 .

  25. Lions J.-L. Controlabilite exacte des systemes distributes. Comptes Rendue des Sciences de l’Academic des Sciences. Ser. 1. 1986. Vol. 302, N 13. P. 471–475.

  26. Stupyalis L. Boundary-value problems for elliptic-hyperbolic equations. Proc. of the V.A. Steklov Mathematical Institute. 1973. Vol. СХXV. P. 211–229.

  27. Stupyalis L. Initial-boundary value problems for equations of mixed type. Proc. of the V.A. SteklovMathematical Institute. 1975. Vol. СXХVII. P. 115–145.

  28. Lions J.-L., Zuazua E. Approximate controllability for a coupled hydro-elastic system. ESAIM: Control, Optimisation and Calculus of Variations. 1995. Vol 1 (1). P. 1–15.

  29. Sanchez-Palencia E. Heterogeneous media and theory of oscillations [Russian translation]. Moscow: Mir, 1984. 472 p.

  30. Lions J.-L. Some methods for solving nonlinear boundary-value problems [Russian translation]. Moscow: Mir, 1972. 587 p.

  31. Ladyzhenskaya O.A. Boundary-value problems of mathematical physics [in Russian]. Moscow: Nauka, 1973. 407 p.

  32. Klyushin D.A., Lyashko S.I., Nomirovskii D.A., Petunin Y.I., Semenov V.V. Applications of the theory of generalized solvability of linear equations. In: Generalized Solutions of Operator Equations and Extreme Elements. Springer Optimization and Its Applications. New York, NY: Springer, 2012. Vol 55. P. 29–101. https://doi.org/10.1007/978-1-4614-0619-8_4.




© 2023 Kibernetika.org. All rights reserved.