Cybernetics And Systems Analysis logo
Editorial Board Announcements Abstracts Authors Archive
Cybernetics And Systems Analysis
International Theoretical Science Journal
-->

DOI: 10.34229/KCA2522-9664.24.1.16
UDC 519.6, 539.3
B.E. Panchenko1, Yu.D. Kovalev2, T.O. Kalinina3,
I.N. Saiko4, L.M. Bukata5



1 Odesa I.I. Mechnykov National University, Odesa, Ukraine

pr-bob@ukr.net

2 State University of Intellectual Technologies and Communications, Odesa, Ukraine

kovalev@ukr.net

3 State University of Intellectual Technologies and Communications, Odesa, Ukraine

kalininat384@gmail.com

4 V.M. Glushkov Institute of Cybernetics, National Academy of Sciences of Ukraine, Kyiv, Ukraine

igor.sayko1988@gmail.com

5 State University of Intellectual Technologies and Communications, Odesa, Ukraine

ygrikluda@gmail.com

MATHEMATICAL MODELING IN STATIC THREE-DIMENSIONAL
BOUNDARY-VALUE PROBLEMS:
A SKEW-SYMMETRIC PROBLEM FOR A LAYER WEAKENED
BY A THROUGH HOLE WITH SLIDING SEALING OF ITS ENDS

Abstract. Spatial static boundary-value problems of mathematical physics for a layer with a non-circular cylindrical through hole have hardly been solved using the method of singular integral equations (SIE) despite the fact that numerous fundamental theoretical issues have been developed. Methods for the calculation of spectral characteristics are also absent. The paper provides an overview of the methods for solving these problems. A new mathematical model has been constructed, and a new method based on a system of three SIEs has been developed and tested numerically. As a result of a high-precision numerical study, it was found that with an increase in the thickness of the layer, an increase in the relative circumferential stress occurs. In the case of a circular hole, a shift of the maximum relative circumferential stress from the ends to the depth of the layer is observed. In the case of an elliptical hole, with a decrease in one of the radii, an increase in the relative circumferential stress is also observed.

Keywords: three-dimensional boundary-value problems, singular integral equations, numerical experiment, static bending, a through hole.


full text

REFERENCES

  1. Lurie A.I. Towards the theory of thick slabs. Prikladnaya matematika i mekhanika. 1942. Vol. 6, Iss. 2/3. P. 151–168.

  2. Prokopov V.K. Review of works on homogeneous solutions of the theory of elasticity and their applications. Proc. Leningr. Polytechnic institute. 1967. Vol. 279. P. 31–46.

  3. Prokopov V.K. Application of the symbolic method to the derivation of plate theory equations. Prikladnaya matematika i mekhanika. 1965. Vol. 29, Iss. 5. P. 902–919.

  4. Gruzdev Yu.A., Prokopov V.K. On the problem of bending a thick slab. Prikladnaya mekhanika. 1970. Vol. 6, Iss. 5. P. 3–9.

  5. Gruzdev Yu.A., Prokopov V.K. Polymoment theory of equilibrium of thick slabs. Prikladnaya matematika i mekhanika. 1968. Vol. 32, Iss. 2. P. 345–352.

  6. Popugaev V.S. Some problems of axisymmetric deformation of a transversally isotropic cylinder. Proc. Leningr. engineer-builder in-te. Leningrad; Moscow: Gosstroyizdat, 1968. Iss. 52 (8).

  7. Aksentyan O.K., Vorovich I.I. Stress state of a thick slab. Prikladnaya matematika i mekhanika. 1962. Vol. 26, Iss. 4. P. 687–696.

  8. Vorovich I.I., Malkina O.S. Stress state of a thick slab. Prikladnaya matematika i mekhanika. 1967. Vol. 31, Iss. 2. P. 230–241.

  9. Kosmodamiansky A.S., Shaldyrvan V.A. Thick multi-connected plates [in Russian]. Kyiv: Nauk. dumka, 1978. 240 p.

  10. Altukhov E.V. Stressed state of thick plates in the case of homogeneous mixed-type boundary conditions at the ends. Teoreticheskaya i prikladnaya mekhanika. 1992. Iss. 23. P. 3–8.

  11. Altukhov E.V. Elastic equilibrium of a layer with a cavity for mixed-type boundary conditions at the ends. Teoreticheskaya i prikladnaya mekhanika. 1993. Iss. 24. P. 3–7.

  12. Altukhov E.V. Mixed problem for a transtropic cylinder with local loading of surfaces. Teoreticheskaya i prikladnaya mekhanika. 1997. Iss. 27. P. 3–10.

  13. Shaldyrvan V.A., Sumtsov A.A., Soroka V.A. Study of stress concentration in hollow short cylinders made of transversally isotropic materials. Prikladnaya mekhanika. 1999. Vol. 35, N 7. P. 43–48.

  14. Filshtinsky L.A. Periodic solutions of the theory of elasticity and electroelasticity for a cylinder in R3. Teoreticheskaya i prikladnaya mekhanika. 1990. Вып. 21. P. 13–20.

  15. Filshtinsky L.A., Kovalev Yu.D. Modeling the stressed state of a piezoceramic layer weakened by through tunnel holes. Bulletin of Kherson State Technical University. 2000. N 2(8). P. 2163–219.

  16. Filshtinsky L.A., Shramko L.V. Fundamental solutions for the piezoceramic layer in R3 (skew-symmetric case, mixed boundary conditions). Teoreticheskaya i prikladnaya mekhanika. 2003. Iss. 38. P. 53–57.

  17. Zhirov V.E. Electroelastic equilibrium of a piezoceramic plate. Prikladnaya matematika i mekhanika. 1977. Vol. 41, N 6. P. 1114–1121.

  18. Xu S.P., Wang W. A refined theory of transversely isotropic piezoelectric plates. Acta Mechanica. 2004. Vol. 171, N 1–2. P. 15– 27. https://doi.org//10.1007//s00707-004-0143-9.

  19. Grinchenko V.T. Equilibrium and steady-state oscillations of elastic bodies of finite dimensions [in Russian]. Kyiv: Nauk. dumka, 1978. 264 p.

  20. Grinchenko V.T., Ulitko A.F. Dynamic problem of elasticity theory for a rectangular prism. Prikladnaya mekhanika. 1971. Vol. 8, N 9. P. 50–57.

  21. Lame G. sur la theorie mathematique de l’elasticite des corps solides. Paris: Bechelier, 1852. 335 p.

  22. Bayda E.N. Some spatial problems of the theory of elasticity [in Russian]. Leningrad: Leningrad State University Publishing House, 1983. 231 p.

  23. Ulitko A.F. Method of eigenvector functions in spatial problems of the theory of elasticity [in Russian]. Kyiv: Nauk. dumka, 1979. 261 p.

  24. Grinchenko V.T., Ulitko A.F., Shulga N.A. Electroelasticity [in Russian]. Kyiv: Nauk. dumka, 1989. 280 p.

  25. Titchmarsh E.Ch. Eigenfunction expansions associated with second order differential equations [Russian translation]. Vol. 1. Moscow: Izd-vo inostr. lit., 1960. 278 p.

  26. Vekua I.N. New methods for solving elliptic equations [Russian translation]. Moscow; Leningrad: Gos. izd-vo tekhn.-teor. lit., 1948. 269 p.

  27. Galerkin B.G. Determination of stresses and displacements in an elastic isotropic body using three functions. Izv. nauch.-issled. in-ta gidromekhaniki. 1931. Vol. 1. P. 49–56.

  28. Galerkin B.G. General solution to the problem of stresses and strains in a thick circular slab and a slab in the form of a circular sector. Izv. nauch.-issled. in-ta gidromekhaniki. 1932. Vol. 7. P. 1–6.

  29. Galerkin B.G. Elastic equilibrium of a hollow circular cylinder and a part of the cylinder. Proceedings of the All-Union. Research Institute of Hydraulic Engineering. Leningrad; Moscow: Glavhydroenergostroy, 1932. Vol. 10. P. 5–9.

  30. Slobodyansky M.G. On general and complete forms for solving elasticity equations. Prikladnaya matematika i mekhanika. 1959. Vol. 23, Iss. 3. P. 468–482.

  31. Slobodyansky M.G. Spatial problems of elasticity theory for prismatic bodies. Scientific notes of Moscow State University. Ser. Mechanics. 1940. Vol. 39. P. 103–144.

  32. Leibenzon L.S. Course on the theory of elasticity [in Russian]. Moscow: Gostekhizdat, 1947. 646 p.

  33. Treffts E. Mathematical theory of elasticity [Russian translation]. Moscow: Gostekhizdat, 1934. 172 p.

  34. Lifshits P.Z. Stress state in an elastic cylinder loaded along the lateral surface by tangential forces. Eng. collection. 1960. Iss. 30. P. 47.

  35. Lurie A.I. Theory of elasticity [in Russian]. Moscow: Nauka, 1970. 940 p.

  36. Uflyand Y.S. Integral transformations in problems of the theory of elasticity [in Russian]. Leningrad: Nauka, 1967. 402 p.

  37. Uflyand Y.S. Method of paired equations in problems of mathematical physics [in Russian]. Leningrad: Nauka, 1977. 220 p.

  38. Rostovtsev N.A. On the problem of torsion of an elastic half-space. Prikladnaya matematika i mekhanika. 1955. Vol. 19, Iss. 1. P. 55–60.

  39. Rostovtsev N.A. Complex potentials in the problem of a stamp that is circular in plan. Prikladnaya matematika i mekhanika. 1957. Vol. 21, Iss. 1. P. 77–82.

  40. Mossakovsky V.I. The main mixed problem of elasticity theory for a half-space with a circular dividing line as boundary conditions. Prikladnaya matematika i mekhanika. 1954. Vol. 18, Iss. 2. P. 187–196.

  41. Kupradze V.D., Hegelia T.G., Basheleishvili M.O., Burchuladze T.V. Three-dimensional problems of the mathematical theory of elasticity and thermoelasticity [in Russian]. Moscow: Nauka, 1976. 658 p.

  42. Mikhlin S.G. Multidimensional singular integrals and integral equations [in Russian]. Moscow: Fizmatgiz, 1962. 379 p.

  43. Vekua N.P. Systems of singular integral equations and some boundary-value problems [in Russian]. Moscow: Nauka, 1970. 379 p.

  44. Muskhelishvili N.I. Singular integral equations [in Russian]. Moscow: Nauka, 1968. 514 p.

  45. Gakhov F.D. Boundary-value problems [in Russian]. Moscow: Science, 1977. 640 p.

  46. Parton V.Z., Perlin P.I. Integral equations of the theory of elasticity [in Russian]. Moscow: Nauka, 1977. 312 p.

  47. Kit G.S., Khai M.V. Method of potentials in three-dimensional problems of thermoelasticity of bodies with cracks [in Russian]. Kyiv: Nauk. dumka, 1989. 283 p.

  48. Stankevich V.Z., Stasyuk B.M., Khai O.I., Solution of the dynamic problem of the interaction of coplanar cracks in a half-space with a clamped surface using boundary integral equations. Prikladnaya mekhanika i tekhnicheskaya fizika. 2005. Vol. 46, Iss. 1. P. 153–159

  49. Voroshko P.P. Effective construction of integral equations of the potential theory of the main boundary value problems of the theory of elasticity. Message 1. Problemy prochnosti. 1996. N 5. P. 83–90.

  50. Panasyuk V.V., Savruk M.P., Nazarchuk Z.T. Method of singular integral equations in two-dimensional diffraction problems. Kyiv: Naukova Dumka, 1984, 344 p.

  51. Linkov A.M. Complex method of boundary integral equations of elasticity theory [in Russian]. St. Petersburg: Nauka, 1999. 382 p.

  52. Grigolyuk E.I., Kovalev Yu.D., Filshtinsky L.A. Mixed skew-symmetric problem of elasticity theory for a layer weakened by through tunnel cuts. Izv. vuzov. Sev.-Kavk. region. Yestestv. nauki. 2000. N 3. P. 46–47.

  53. Hadamard J. Cauchy problem for linear partial differential equations of hyperbolic type [Russian translation]. Moscow: Nauka, 1978. 278 p.

  54. Kaya A.C., Erdogan F. On the solution of integral equations with strongly singular kernels. Quart. Appl. Math. 1981. Vol. 45, N 1. P. 105–122. https://doi.org/10.1090/qam/885173.

  55. Paget D.F. The numerical evaluations of Hadammard finite-part integrals. Numer. Math. 1981. Vol. 36, N 4. P. 447–453. https://doi.org/10.1007/BF01395957 .

  56. Filshtinsky L.A. Fundamental solutions of the electroelasticity equations for the piezoceramic layer in R3. Mekhanika kompozitnykh materialov. 2001. Vol. 37, N 3. P. 377–388.

  57. Filshtinsky L.A. Kovalev Yu.D., Khvorost V.A. Study of the influence of the boundary surface on the SIF distribution in the vicinity of stress concentrators in an elastic half-layer. Applied problems of mathematical modeling: Special. issue Bulletin of Kherson State Technical University. Kherson: KhSTU, 1999. P. 81–83.

  58. Suslova N.N. Methods for solving a spatial problem in the theory of elasticity for a body in the shape of a parallelepiped. Results of science and technology. Mechanics of deformations. solid body [in Russian]. Moscow: VINITI, 1980. Vol. 13. P. 187–236.

  59. Knops R.J., Payne L.E. Uniqueness theorems in linear elasticity. Berlin: Springer-Verlag, 1971. 130 p.

  60. Wang M.Z., Zhao B.S. The decomposed form of three-dimensional elastic plate. Acta Mech. 2003. Vol. 166. P. 207–216. https://doi.org/10.1007/s00707-003-0029-2 .

  61. Sneddon I. N. The use of transform methods in elasticity. Tech. Rept. AFOSR TR 64-1789, North Carolina State College, Nov. 6, 1964. URL: https://ntrs.nasa.gov/api/citations/19690011434.

  62. Banerjee P., Butterfield R. Boundary Element Methods in Engineering Science [Russian translation]. Moscow: Mir, 1984. 494 p.

  63. Brebbia C., Telles J., Wrobel L. Boundary element techniques [Russian translation]. Moscow: Mir, 1987. 524 p.

  64. Farid A.F., Rashed Y.F. BEM for thick plates on unilateral Winkler springs. Innov. Infrastruct. Solut. 2018. Vol. 3, N 1, Article 26. https://doi.org/10.1007/s00707-017-1988-z .

  65. Karpilovsky V.S. Finite element method and problems of elasticity theory. Kyiv: Sofia А, 2022. 275 p.

  66. W. Jiang, W. Woo, Y. Wan, Y. Luo, X. Xie. Evaluation of through-thickness residual stresses by neutron diffraction and finite-element method in thick weld plates. J. Pressure Vessel Technol. 2017. Vol. 139, N 3. https://doi.org/10.1115/1.4034676.

  67. Musaev V.K. Assessing the accuracy and reliability of numerical modeling when solving problems of reflection and interference of non-stationary elastic stress waves. Advances of modern natural science. 2015. N 1. P. 1184–1187.

  68. Grigorenko Ya.M., Grigorenko A.Ya., Rozhok L.S. To the solution of the problem of the stressed state of solid cylinders under various boundary conditions at the ends. Prikladnaya mekhanika. 2006. Vol. 42, N 6. P. 24–31.

  69. Alexandrov A.Ya., Soloviev Yu.I. On the generalization of the method for solving axisymmetric problems of the theory of elasticity using analytical functions to spatial problems without axial symmetry. Dokl. AN SSSR. 1964. Vol. 154, N 2. P. 294–297.

  70. Alexandrovich A.I. Application of the theory of functions of two complex variables to the solution of spatial problems in the theory of elasticity. Proc. Academy of Sciences of the USSR. Solid mechanics. 1977. N 2. P. 164–168.

  71. Panchenko B.E., Kovalev Yu.D., Bukata L.M., Zhironkina O.S. Mathematical modeling of a symmetric boundary value problem for a layer with diaphragm-covered ends weakened by two through holes. Problemy keruvannya ta informatyky. 2023. N 2. P. 18–29. https://doi.org/10.34229/1028-0979-2023-2-2.

  72. Khimich A.N., Polyanko V.V. Efficiency of two-dimensional block-cyclic parallel algorithms. Problemy programuvanny. 2008. N 3. P. 145–149.

  73. Panchenko B.E. On the numerical study of systems of singular integral equations of the first kind and with an indeterminate index, taking into account the condition number of SLAEs. Bulletin of the National Technical University "KhPI". Ser. Mathematical modeling in engineering and technology. 2019. N 8. P. 155–164.

  74. Sheshko M.A., Shulyaev D.S., Rasolko G.A., Mastyanytsya V.S. On the question of the conditionality of matrices of a linear algebraic system arising from the approximation of a singular integral equation with a Cauchy kernel. Differential equations. 1999. Vol. 35, N 9. P. 1278–1285.




© 2024 Kibernetika.org. All rights reserved.