DOI
10.34229/KCA2522-9664.24.4.2
UDC 519. 21
1 V.M. Glushkov Institute of Cybernetics, National Academy of Sciences of Ukraine, Kyiv,
Ukraine
knopov1@yahoo.com
|
2 V.M. Glushkov Institute of Cybernetics, National Academy of Sciences of Ukraine, Kyiv,
Ukraine
pepelaev@yahoo.com
|
CONTROLLED STOCHASTIC SYSTEMS
Abstract. Controlled Markov and semi-Markov processes and systems are considered. A review of inventory control problems is provided. One- and multiproduct models with different types of cost function and optimality criteria are considered. The optimality conditions and structures of optimal strategies in the problems are investigated.
Keywords: Markov processes, semi-Markov processes, inventory control, (s,S )-strategy, optimality criterion, optimal strategy.
full text
REFERENCES
- Viskov O.V., Shiryaev A.N. On controls arriving at optimal stationary modes. Proceedings of the Steklov Mathematical Institute. 1964. N 71. P. 35–45.
- Gubenko L.G., Shtatland E.S. On discrete-time Markov decision processes. Theory of Probability and Mathematical Statistics. 1975. N 7. P. 47–61.
- Gubenko L.G., Shtatland E.S. On controlled Markov and semi-Markov models and some applied problems of optimization of stochastic systems. Proceedings of the Conference on Controlled Systems. Kyiv. 1972. P. 87–119.
- Gubenko L.G., Shtatland E.S. On controlled semi-Markov processes. Kibernetika. 1972. N 2. P. 26–29.
- Feinberg E.A., Shwartz A. Handbook of Markov decision processes: methods and applications. New York: Springer Verlag, 2002. 566 p.
- Pepelyaeva T.V., Vovk L.B., Demchenko I.Yu. On one problem of a multi-item model of inventory theory. Upravlyayushchiye sistemy i mashiny. 2015. N 2. P. 32–38.
- Knopov P.S., Pepelyaeva T.V. Some multidimensional stochastic models of inventory control with a separable cost function. Cybernetics and Systems Analysis. 2022. Vol. 58, N 4. P. 523–529. doi.org/10.1007/s10559-022-00487-6 .
- Pepelyaeva T.V., Demchenko I.Yu. About one multi-item model for a semi-Markov inventory system. Komp'yuternaya matematika. 2015. N 2. P. 150–162.
- Daduna H., Knopov P.S., Tur L.P. Optimal strategies for an inventory system with cost functions of general form. Cybernetics and Systems Analysis. 1999. Vol. 35, N 4. P. 602–618. doi.org/10.1007/BF02835856 .
- Demchenko S.S., Knopov A.P., Pepelyaev V.A. Optimal strategies for inventory control systems with a convex cost function. Cybernetics and Systems Analysis. 2000. Vol. 36, N 6. P. 891–897. doi.org/10.1023/A:1009413511883.
- Pepelyaeva T.V., Vovk L.B., Demchenko I.Yu. Optimal strategies for the multi-task inventory control model. Cybernetics and Systems Analysis. 2016. Vol. 52, N 1. P. 107–112. doi.org/10.1007/s10559-016-9805-6.
- Knopov P.S., Pepelyaeva T.V. Some multi-task inventory control models for a criterion with revaluation. Cybernetics and Systems Analysis. 2023. Vol. 59, N 6. P. 928–933. doi.org/10.1007/s10559-023-00628-5 .
- Demchenko S.S., Knopov P.S., Chornei R.K. Optimal strategies for a semi-Markov inventory system. Kibernetika i sistemnyj analiz. 2002. Vol. 38, N 1. P. 146-160.
- Knopov P.S., Pepelyaeva T.V., Demchenko I.Yu. A semi-Markov inventory control model. Cybernetics and Systems Analysis. 2016. Vol. 52, N 5. P. 730–736. doi.org/10.1007/ s10559-016-9874-6 .
- Knopov A.P., Pepelyaev V.A. On optimal strategies for inventory control systems with convex objective functions. Komp'yuternaya matematika. 2005. N 3. P. 116–121.
- Knopov A.P., Pepelyaev V.A. Some continuous models of inventory control. Cybernetics and Systems Analysis. 2005. Vol. 41, N 3. P. 465–467. doi.org/10.1007/s10559-005-0080-1 .
- Knopov P.S., Pepelyaev V.A. On one model of controlled semi-Markov process. Tavricheskij Vestn. Inform. Mat. 2005. N 2. P. 5–13.
- Knopov P., Norkin V. Stochastic optimization methods for the stochastic storage process control. In: Intelligent Control and Smart Energy Management. Blondin M.J., Fernandes Trovo J.P., Chaoui H., Pardalos P.M. (Eds.). Springer Optimization and Its Applications. 2022. Vol. 181. P. 79–111. doi.org/10.1007/978-3-030-84474-5_3.
- Derieva E.N., Pepelyaeva T.V. About one problem of control of random processes. Kibernetika i sistemnyj analiz. 2004. Vol. 40, N 1. P. 116–121.