DOI
10.34229/KCA2522-9664.24.5.9
UDC 519.6
|
2 Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
mayko@knu.ua
|
RECONSTRUCTION OF THE PDE WITH POLYNOMIAL COEFFICIENTS BASED
ON THE INFORMATION ABOUT ITS SOLUTIONS
Abstract. We develop and substantiate the algorithm for finding an ordinary differential equation of minimum order with polynomial coefficients over the field of rational numbers, whose solutions are a given system of polynomials (here, a system of the modified Laguerre–Cayley polynomials).
Keywords: system of the Laguerre–Cayley polynomials, the Mittag-Leffler function, ordinary differential equation, polynomial coefficient, rational number.r.
full text
REFERENCES
- 1. He Y., Zhao Y., Zhong Y. How much can one learn a partial differential equation from its solution? arXiv:2204.04602v1 [math.NA] 10 Apr 2022. doi.org/10.48550/arXiv.2204.04602.
- 2. Gavrilyuk I.P., Makarov V.L. The Cayley transform and the solution of an initial value problem for a first order differential equation with an unbounded operator coefficient in Hilbert space. Numerical Functional Analysis and Optimization. 1994. Vol. 15, N 5–6. P. 583–598. doi.org/10.1080/01630569408816582.
- 3. Gavrilyuk I.P., Makarov V.L. Strongly positive operators and numerical algorithms without saturation of precision. Proc. Institute of Mathematics NASU: Mathematics and its applications. T. 52. Kyiv: Institute of Mathematics of the National Academy of Sciences of the National Academy of Sciences, 2004. 500 p.
- 4. Havu V., Malinen J. The Cayley transform as a time discretization scheme. Numerical Functional Analysis and Optimization. 2007. Vol. 28, N 7–8. P. 825–851. doi.org/10.1080/01630560701493321.
- 5. Makarov V.L., Mayko N.V., Ryabichev V.L. Unimprovable convergence rate estimates of the Cayley transform method for the approximation of the operator exponent in the Hilbert space. Cybernetics and Systems Analysis. 2023. Vol. 59, N 6. P. 943–948. doi.org/10.1007/ s10559-023-00630-x .
- 6. Makarov V.L. Meissner polynomials and their properties. Dopov. Nats. akad. nauk Ukr. 2019. N 7. P. 3–8. doi.org/10.15407/dopovidi2019.07.003.
- 7. Mayko N.V. Super-exponential rate of convergence of the Cayley transform method for an abstract differential equation. Cybernetics and Systems Analysis. 2020. Vol. 56, N 3. P. 492–503. doi.org/10.1007/s10559-020-00265-2.
- 8. Makarov V.L., Mayko N.V. Weighted estimates of the Cayley transform method for boundary value problems in a Banach space. Numerical Functional Analysis and Optimization. 2021. Vol. 42, N 2. P. 211–233. doi.org/10.1080/01630563.2020.1871010.
- 9. Gavrilyuk I.P., Makarov V.L., Mayko N.V. Weighted estimates of the Cayley transform method for abstract differential equations. Computational Methods in Applied Mathematics. 2021. Vol. 21, N 1. P. 53–68.
- 10. Mittag-Leffler G.M. Une gБnБralization de l’intБgrale de Laplace–Abel. Comput. Rend. Acad. Sci. Paris. 1903. Vol. 136. P. 537–539.
- 11. Gorenfo R., Kilbas A.A., Mainardi F., Rogosin S.V. Mittag-Leffler functions. related topics and applications. 2nd ed. Springer, 2020. 548 p.
- 12. McLean W. Numerical evaluation of Mittag-Leffler functions. Calcolo. 2021. Vol. 58, Article number 7. doi.org/10.1007/s10092-021-00398-6.
- 13. Mclean W., ThomБe V. Numerical solution via Laplace transforms of a fractional order evolution equation. J. Integral Equations Applications. 2010. Vol. 22, N 1. P. 57–94. doi.org/10.1216/JIE-2010-22-1-57.
- 14. Bateman H., ErdБlyi A. Higher transcendental functions. Vol. 2. New York; Toronto; London: McGraw-Hill, 1953. 316 p.
- 15. Makarov V.L., Makarov S.V. Cayley's functions and polynomials. Dopov. Nats. akad. nauk Ukr. 2022. N 5. P. 3–9. doi.org/10.15407/dopovidi2022.05.003.
- 16. The encyclopedia of integer sequences. Sloane N.J.A., Plouffe S. (Eds.). San Diego: Academic Press, 1995.