Cybernetics And Systems Analysis logo
Editorial Board Announcements Abstracts Authors Archive
KIBERNETYKA TA SYSTEMNYI ANALIZ
International Theoretical Science Journal
-->

DOI 10.34229/KCA2522-9664.24.5.12
UDC 517.95
E.T. Karimov1, N.E. Tokmagambetov2, D.A. Usmonov3


1 Fergana State University, Fergana, Uzbekistan

erkinjon@gmail.com

2 Centre de Recerca Matematica Cerdanyola del Valles, Barcelona, Spain, and Institute of Mathematics and Mathematical Modeling, Almaty, Kazakhstan

tokmagambetov@crm.cat;  tokmagambetov@math.kz

3 Fergana State University, Fergana, Uzbekistan

dusmonov909@gmail.com

INVERSE-INITIAL PROBLEM FOR TIME-DEGENERATE PDE
INVOLVING THE BI-ORDINAL HILFER DERIVATIVE

Abstract. A unique solvability of the inverse initial problem for a time-degenerate fractional partial differential equation is proved. Using the method of variable separation, we obtain the Cauchy problem for the fractional differential equation involving the bi-ordinal Hilfer derivative in the time variable. The authors present the solution to this Cauchy problem in an explicit form via the Kilbas–Saigo function. Further, using the upper and lower bounds of this function, the authors prove the uniform convergence of the infinite series corresponding to the solution of the formulated inverse initial problem.

Keywords: inverse-initial problem, degenerate PDE, bi-ordinal Hilfer operator, Kilbas–Saigo function.


full text

REFERENCES

  • 1. Kilbas A.A., Srivastava H.M., Trujillo J.J. Theory and applications of fractional differential equations. Amsterdam: Elsevier, 2006. 523 p. URL: www.sciencedirect.com/ bookseries/north-holland-mathematics-studies/vol/204.

  • 2. Uchaikin V.V. Fractional derivatives for physicists and engineers. Berlin; Heidelberg: Springer, 2013. XXI, 385 p. URL: https://link.springer.com/book/10.1007/978-3-642-33911-0.

  • 3. Кочубей А.Н. Диффузия дробного порядка. Дифференциальные уравнения. 1990. Т. 26, № 4 С. 660–670.

  • 4. Luchko Y., Yamomoto M. General time-fractional diffusion equation: some uniqueness and existence results for the initial-boundary-value problems. Fract. Calc. Appl. Anal. 2016. Vol. 19, Iss 3. P. 676–695. doi.org/10.1515/fca-2016-0036.

  • 5. Zacher R. Time fractional diffusion equations: solution concepts, regularity, and long-time behavior. In: Handbook of Fractional Calculus with Applications. Volume 2 Fractional Differential Equations. Kochubei A., Luchko Yu. (Eds.). Berlin; Boston: De Gruyter, 2019. P. 159–180. doi.org/10.1515/9783110571660-008.

  • 6. Nakagawa J., Sakamoto K., Yamamoto M. Overview to mathematical analysis for fractional diffusion equations — new mathematical aspects motivated by industrial collaboration. J. Math-for-Indust. 2010. Vol. 2 (2010A-10). P. 99-108.

  • 7. Fa K.S., Lenzi E.K. Time-fractional diffusion equation with time dependent diffusion coefficient. Phys. Rev. E. 2005. Vol. 72, Iss. 1. 011107. doi.org/10.1103/PhysRevE.72.011107.

  • 8. Bologna M., Svenkeson A., West B.J., Grigolini P. Diffusion in heterogeneous media: an iterative scheme for finding approximate solutions to fractional differential equations with time-dependent coefficients. J. Comp. Phys. 2015. Vol. 293. P. 297–311. doi.org/10.1016/j.jcp.2014.08.027.

  • 9. Hristov J. Subdiffusion model with time-dependent diffusion coefficient: integral-balance solution and analysis. Thermal Science. 2017. Vol. 21, Iss. 1. Part A. P. 69–80. doi.org/10.2298/TSCI160427247H .

  • 10. Costa F.S., de Oliveira E.C., Plata A.R.G. Fractional diffusion with time-dependent diffusion coefficient. Rep. Math. Phys. 2021. Vol. 87, Iss. 1. P. 59–79. doi.org/10.1016/S0034-4877(21)00011-2.

  • 11. Fedorov V.E., Nazhimov R.R. Inverse problems for a class of degenerate evolution equations with Riemann–Liouville derivative. Fract. Calc. Appl. Anal. 2019. Vol. 22, N 2. P. 271–286. doi.org/10.1515/fca-2019-0018.

  • 12. Al-Salti N., Karimov E.T. Inverse source problems for degenerate time-fractional PDE. Progr. Fract. Differ. Appl. 2022. Vol. 8, N 1. P.39–52. doi.org/10.18576/pfda/080102.

  • 13. Smadiyeva A.G., Torebek B.T. Decay estimates for the time-fractional evolution equations with time-dependent coefficients. arXiv:2210.16120v2 [math.AP] 18 Jul 2023. doi.org/10.48550/arXiv.2210.16120.

  • 14. Вабищевич П.Н. Нелокальные параболические задачи и обратная задача теплопроводности. Дифференциальные уравнения. 1981. Т. 17, № 7. С. 1193–1199.

  • 15. de Andrade B., Cuevas C., Soto H. On fractional heat equations with non-local initial conditions. Proceedings of the Edinburgh Mathematical Society. 2016. Vol. 59, Iss. 1. P. 65–76. doi.org/10.1017/S0013091515000590.

  • 16. Pao C.V. Reaction diffusion equations with nonlocal boundary and nonlocal initial conditions. J. Math. Anal. Appl. 1995. Vol.195, Iss. 3. P. 702–718. .

  • 17. Tuan N.H., Triet N A., Luc N H., Phuong N.D. On a time fractional diffusion with nonlocal in time conditions. Adv. Differ. Equ. 2021. Article number 204. P. 1–14. doi.org/ 10.1186/s13662-021-03365-1.

  • 18. Ashyralyev A.O., Hanalyev A., Sobolevskii P.E. Coercive solvability of nonlocal boundary value problem for parabolic equations. Abstr. Appl. Anal. 2001. Vol. 6, Iss. 1. P. 53–61. doi.org/10.1155/S1085337501000495.

  • 19. Ashurov R., Fayziev Y. On the nonlocal problems in time for time fractional subdiffusion equations. Fractal Fract. 2022. Vol. 6, Iss. 1. Article number 41. doi.org/10.3390/fractalfract6010041.

  • 20. Karimov E., Mamchuev M., Ruzhansky M. Non-local initial problem for second order time-fractional and space-singular equation. Hokkaido Math. J. 2020. Vol. 49, Iss. 2. P. 349–361. doi.org/10.14492/hokmj/1602036030.

  • 21. Karimov E., Toshtemirov B. On a time-nonlocal boundary value problem for time-fractional partial differential equation. International Journal of Applied Mathematics. 2022. Vol. 35, Iss. 3. P. 423–438. dx.doi.org/10.12732/ijam.v35i3.5.

  • 22. Ruzhansky M., Tokmagambetov N., Torebek B.T. Inverse source problems for positive operators. I: Hypoelliptic diffusion and subdiffusion equations. Journal of Inverse and Ill-posed Problems. 2019. Vol. 27, Iss. 6. P. 891–911. doi.org/10.1515/jiip-2019-0031.

  • 23. Ashurov R.R., Mukhiddinova A.T. Inverse problem of determining the heat source density for the subdiffusion equation. Differential equations. 2020. Vol. 56, Iss. 12. P. 1550–1563. doi.org/10.1134/S00122661200120046.

  • 24. Boudabsa L., Simon T. Some properties of the Kilbas–Saigo function. Mathematics. 2021. Vol. 9, Iss. 3. Article number 217. doi.org/10.3390/math9030217.

  • 25. Hilfer R. Experimental evidence for fractional time evolution in glass forming materials. J. Chem. Phys. 2002. Vol. 284, Iss. 1–2. P. 399–408. doi.org/10.1016/S0301-0104(02)00670-5.

  • 26. Bulavatsky V.M. Closed form of the solutions of some boundary-value problems for anomalous diffusion equation with Hilfer’s generalized derivative. Cybernetics and Systems Analysis. 2014. Vol. 30, N 4. P. 570–577. doi.org/10.1007/s10559-014-9645-1.

  • 27. Karimov E.T., Toshtemirov B.H. Non-local boundary value problem for a mixed-type equation involving the bi-ordinal Hilfer fractional differential operators. Uzbek Mathematical Journal. 2021. Vol. 65, Iss. 2. P. 61–77. arXiv:2106.13223v1 [math.AP] 24 Jun 2021. doi.org/10.48550/arXiv.2106.13223.

  • 28. Saigo M., Kilbas A.A. On Mittag-Leffler type function and applications. Integral Transforms and Special Functions. 1998. Vol. 7, Iss. 1–2. P. 97–112. doi.org/10.1080/10652469808819189.

  • 29. Gorenflo R., Kilbas A.A., Mainardi F., Rogosin S.V. Mittag-Leffler functions, related topics and applications. Heidelberg: Springer, 2020. XIV, 443 p. https://link.springer.com/book/10.1007/978-3-662-61550-8.

  • 30. Karimov E., Ruzhansky M., Tokmagambetov N. Cauchy type problems for fractional differential equations. Integral Transforms and Special Functions. 2022. Vol. 33, Iss. 1. P. 47–64. doi.org/10.1080/10652469.2021.1900174.




© 2024 Kibernetika.org. All rights reserved.