DOI
10.34229/KCA2522-9664.24.6.11
UDC 519.622.22
1 Institute of Control Systems of Ministry of Science and Education of Republic of Azerbaijan;
Institute of Mathematics and Mechanics Ministry of Science and Education of Republic of Azerbaijan; Baku, Azerbaijan
kamil.aydazade@gmail.com
|
2 Institute of Control Systems of Ministry of Science and Education of Republic of Azerbaijan; Azerbaijan State Oil and Industry University; Western Caspian University; Azerbaijan University of Architecture and Construction, Baku, Azerbaijan
vagif_ab@yahoo.com
|
APPROACH TO DETERMINING THE PARAMETERS OF A DYNAMIC SYSTEM
UNDER NONLOCAL HIGH-ORDER OVERDETERMINATION CONDITIONS
Abstract. We analyze the problem of identifying the constant parameters involved in the right-hand sides of a linear non-autonomous system of differential equations with first-order ordinary derivatives. The specificity of the problem is that additional conditions for identifying parameters, first, are non-local, and second, include derivatives of an unknown function. We examine the conditions for the existence and uniqueness of a solution to the problem and propose two different approaches to the numerical solution of the problem. The results of computer experiments are presented.
Keywords: dynamic system, parametric identification, loaded differential equation, conditions for the existence of a solution, computer experiments.
full text
REFERENCES
- 1. Ayda-Zade K.R. Numerical method of identification of dynamic system parameters. J. Inverse Ill-Posed Probl. 2005. Vol. 13, Iss. 3. P. 201–211. URL: https://doi.org/10.1515/156939405775199550 .
- 2. Aida-zade K.R., Abdullaev V.M. Numerical approach to parametric identification of dynamic systems. Journal of Automation and Information Sciences. 2014. Vol. 46, Iss. 3. P. 1–14. URL: https://doi.org/10.1615/JAutomatInfScien.v46.i3.40 .
- 3. Abdullayev V.M. Identification of the functions of response to loading for stationary systems. Cybernetics and Systems Analysis. 2017. Vol. 53, N 3. P. 417–425. URL: https://doi.org/10.1007 .
- 4. Aida-Zade K.R., Kuliev S.Z. A class of inverse problems for discontinuous systems. Cybernetics and Systems Analysis. 2008. Vol. 44, N 6. P. 915–924. URL: https://doi.org/10.1007 .
- 5. Bakirova E.A., Assanova A.T., Kadirbayeva Z.M. A problem with parameter for the integro-differential equations. Mathematical Modelling and Analysis. 2021. Vol. 26, N 1. P. 34–54. URL: https://doi.org/10.3846 .
- 6. Nesterenko O.B. Modified projection-iterative method for weakly nonlinear integrodifferential equations with parameters. J. Math. Sci. 2014. Vol. 198, N 3. P. 328–335. URL: https://doi.org/ 10.1007 .
- 7. Денисов А.М. Введение в теорию обратных задач: учебное пособие. Москва: Изд-во МГУ им. М.В. Ломоносова, 1994. 208 c.
- 8. Kunze H.E., Vrscay E.R. Solving inverse problems for ordinary differential equations using the Picard contraction mapping. Inverse Problems. 1999. Vol. 15, N 3. P. 745–770. URL: https://www.math.uwaterloo.ca/~ervrscay .
- 9. Naimov A.N., Bystretskii M.V., Nazimov A.B. Identification of periodic regimes in a dynamic system. Autom. Remote Control. 2023. Vol. 84, Iss. 5. P. 470–475. URL: https://doi.org/10.1134 .
- 10. Ащепков Л.Т., Новосельский А.В., Тятюшкин А.И. Идентификация динамических систем как задача управления параметрами. Автоматика и телемеханика. 1975. №. 3. С. 178–182
- 11. Тамаркин Я.Д. О некоторых общих задачах теории обыкновенных дифференциальных уравнений и о разложении произвольных функций в ряды. Петроград, 1917. 308 с.
- 12. de la VallБe-Poussin Ch.J. Sur l’Бquation diffБrentielle linБare du second ordre. DБtermination d’une integrale par deux valeurs assignБes. Extension aux Бquations d’orde n. Journal de Pures et 1929. Vol. 8, N 9. P. 125–144. URL: https://eudml.org/ doc/234293 .
- 13. Dzhumabaev D.S., Imanchiev A.E. The correct solvability of a linear multipoint boundary value problem. Math. J. 2005. Vol. 5, N 15. P. 30–38
- 14. Mardanov M.J., Sharifov Y.A., Zeynalli F.M. Existence and uniqueness of the solutions to impulsive nonlinear integro-differential equations with nonlocal boundary conditions. Proceedings of the Institute of Mathematics and Mechanics. 2019. Vol. 45, N 2. P. 222–232. URL: https://doi.org/10.29228 .
- 15. Aida-zade K.R., Abdullayev V.M. To the solution of integro-differential equations with nonlocal conditions. Turkish Journal of Mathematics. 2022. Vol. 46, N 1. P. 177–188. URL: https://doi.org/10.3906 .
- 16. Zubova S.P., Raetskaya E.V. Algorithm to solve linear multipoint problems of control by the method of cascade decomposition. Autom. Remote Control. 2017. Vol. 78, N 7. P. 1189–1202. URL: https://doi.org/10.1134 .
- 17. Aida-zade K.R., Abdullayev V.M. Optimization of right-hand sides of nonlocal boundary conditions in a controlled dynamical system. Autom. Remote Control. 2021. Vol. 82, N 3. P. 375–397. URL: https://doi.org/10.1134 .
- 18. Rothe E. Zweidimensionale parabolische Randwertaufgaben als Grenzfall eindimensionaler Randwertaufgaben. Mathematische Annalen. 1930. Vol. 102, N 1. P. 650–670. URL: http://eudml.org/doc/159400 .
- 19. Sergienko I.V., Deineka V.S. Optimal control of distributed systems with conjugation conditions. New York: Kluwer Acad. Publ., 2005. 383 p.
- 20. Sergienko I.V., Deineka V.S. Solution of inverse boundary-value problems for multicomponent parabolic distributed systems. Cybernetics and Systems Analysis. 2007. Vol. 43, N 4. P. 507–526. URL: https://doi.org/10.1007 .
- 21. Kabanikhin S.I. Inverse and ill-posed problems: Theory and applications. Inverse Ill-Posed Probl. Ser. Vol. 55. Berlin: De Gruyter, 2011. 459 p.
- 22. Prilepko A.I., Orlovsky D.G., Vasin I.A. Methods for solving inverse problems of mathematical physics. New York: Marcel Dekker, 2000. 709 p.
- 23. Vabishchevich P.N., Vasil’ev V.I. Computational algorithms for solving the coefficient inverse problem for parabolic equations. Inverse Probl. Sci. Eng. 2016. Vol. 24, Iss. 1. P. 42–59. URL: https://doi.org/10.1080 .
- 24. Samarskii A.A., Vabishchevich P.N. Numerical methods for solving inverse problems in mathematical physics. Berlin: Walter de Gruyter, 2007. 438 p.
- 25. Karchevsky A.L. A proper flow chart for a numerical solution of an inverse problem by an optimization method. Numer. Analys. Appl. 2008. Vol. 1, Iss. 2. P. 114–122. URL: https://doi.org/10.1134 .
- 26. Ling L., Yamamoto M., Hon Y.C., Takeuchi T. Identification of source locations in two-dimensional heat equations. Inverse Problems. 2006. Vol. 22, N 4. P. 1289–1305. URL: https://doi.org/10.1088 .
- 27. Ismailov M.I., Kanca F., Lesnic D. Determination of a time-dependent heat source under nonlocal boundary and integral over determination conditions. Appl. Math. Comput. 2011. Vol. 218, Iss. 8. P. 4138–4146. URL: https://doi.org/10.1016 .
- 28. Aida-zade K.R., Abdullayev V.M. Control synthesis for temperature maintaining process in a heat supply problem. Cybernetics and Systems Analysis. 2020. Vol. 56, N 3. P. 380–391. URL: https://doi.org/10.1007 .
- 29. Aida-zade K.R., Abdullayev V.M. Controlling the heating of a rod using the current and preceding time feedback. Autom. Remote Control. 2022. Vol. 83, N 1. P. 106–122. URL: https://doi.org/10.1134 .
- 30. Abdullaev V.M., Aida-zade K.R. On the numerical solution of loaded systems of ordinary differential equations. Comput. Math. Math. Phys. 2004. Vol. 44, N 9. P. 1585–1595
- 31. Assanova A.T., Imanchiyev A.E., Kadirbayeva Zh.M. Numerical solution of systems of loaded ordinary differential equations with multipoint conditions. Comput. Math. Math. Phys. 2018. Vol. 58, N 4. P. 508–516. URL: https://doi.org/10.1134 .
- 32. Abdullaev V.M., Aida-zade K.R. Numerical method of solution to loaded nonlocal boundary value problems for ordinary differential equations. Comput. Math. Math. Phys. 2014. Vol. 54, N 7. P. 1096–1109. URL: https://doi.org/10.1134 .