DOI
10.34229/KCA2522-9664.25.1.6
UDC 519. 21
1 V.M. Glushkov Institute of Cybernetics, National Academy of Sciences of Ukraine, Kyiv, Ukraine
knopov1@yahoo.com
|
2 V.M. Glushkov Institute of Cybernetics, National Academy of Sciences of Ukraine, Kyiv, Ukraine
pepelaev@yahoo.com
|
SOME APPLIED PROBLEMS OF THE THEORY OF CONTROLLED
RANDOM PROCESSES
Abstract. Some applied problems of the theory of controlled random processes arising in the reliability and queueing theories are analyzed. The conditions whereby finding the optimal strategy is reduced to some mathematical programming problems and numerical methods of their solution are given.
Keywords: Markov processes, semi-Markov processes, optimal control, optimality criterion, optimal planning, queueing systems, optimal strategy.
full text
REFERENCES
- 1. Knopov P.S., Pepelyaeva T.V. Controlled stochastic systems. Cybernetics and Systems Analysis. 2024. Vol. 60, N 4. P. 525–540. URL: https://doi.org/10.1007/s10559-024-00693-4. .
- 2. Viskov O.V, Shiryaev A.N. Controls leading to optimal stationary modes. Mathematical Institute of Academy of Science USSR. Collect. for Theory of Probability and Mathematical Statistics. Moscow: Nauka, 1964. P. 35–45.
- 3. Gubenko L.G., Shtatland E.S. On discrete time Markov decision processes. Theory of Probability and Mathematical Statistics. 1972. Vol. 7. P. 47–61.
- 4. Gubenko L.G., Shtatland E.S. On controlled Markov and semi-Markov models and some applied problems of optimization of stochastic systems. Proceedings of the Conference on Controlled Systems. Kyiv, 1972. P. 87–119.
- 5. Feinberg E.A., Shwartz A. Handbook of Markov decision processes: Methods and applications. New York: Springer Verlag, 2002. 566 p.
- 6. Gubenko L.G., Statland E.S. Controlled semi-Markov processes. Cybernetics. 1972. Vol. 8, N 2. P. 200–205. https://doi.org/10.1007/BF01068488. .
- 7. Demchenko S.S., Knopov P.S., Chornej R.K. Optimal strategies for a semi-Markovian inventory system. Cybernetics and Systems Analysis. 2002. Vol. 38, N 1. P. 124–136. https://doi.org/10.1023/A:1015556518666. .
- 8. Demchenko S.S., Knopov A.P., Pepelyaev V.A. Optimal strategies for inventory control systems with a convex cost functions. Cybernetics and Systems Analysis. 2000. Vol. 36, N 6. P. 891–897. https://doi.org/10.1023/A:1009413511883. .
- 9. Pepelyaeva T.V., Vovk L.B., Demchenko I.Yu. On one problem of a multi-nomenclature model of inventory theory. Control systems and machines. 2015. N 2. P. 32–38. URL: URL: http://nbuv.gov.ua/UJRN/USM_2015_2_4. .
- 10. Knopov P.S., Pepelyaeva T.V. Some multidimensional stochastic models of inventory control with a separable cost function. Cybernetics and Systems Analysis. 2022. Vol. 58, N 4. P. 523–529. https://doi.org/10.1007/s10559-022-00487-6. .
- 11. Pepelyaeva T.V., Demchenko I.Yu. On one multi-item model for a semi-Markov inventory system. Komp'yuternaya matematika. 2015. N 2. P. 150–162.
- 12. Knopov P.S., Samosonok A.S. On Markov stochastic processes with local interaction for solving some applied problems. Cybernetics and Systems Analysis. 2011. Vol. 47, N 3. P. 346–359. https://doi.org/10.1007/s10559-011-9317-3. .
- 13. Pepelyaeva T.V., Vovk L.B., Demchenko I.Yu. Optimal strategies for the multi-task inventory control model. Cybernetics and Systems Analysis. 2016. Vol. 52, N 1. P. 107–112. https://doi.org/10.1007/s10559-016-9805-6. .
- 14. Knopov P.S., Pepelyaeva T.V. Some multi-task inventory control models for a criterion with revaluation. Cybernetics and Systems Analysis. 2023. Vol. 59, N 6. P. 928–933. https://doi.org/10.1007/s10559-023-00628-5. .
- 15. Knopov P.S., Pepelyaeva T.V., Demchenko I.Yu. A semi-Markov inventory control model. Cybernetics and Systems Analysis. 2016. Vol. 52, N 5. P. 730–736. https://doi.org/10.1007/ s10559-016-9874-6. .
- 16. Knopov A.P., Pepelyaev V.A. Some continuous models of inventory control. Cybernetics and Systems Analysis. 2005. Vol. 41, N 3. P. 465–467. https://doi.org/10.1007/s10559-005-0080-1. .
- 17. Knopov P., Norkin V. Stochastic optimization methods for the stochastic storage process control. In: Intelligent Control and Smart Energy Management. Blondin M.J., Fernandes Trovo J.P., Chaoui H., Pardalos P.M. (Eds.). SOIA. 2022. Vol. 181. P. 79–111. https://doi.org/10.1007/978-3-030-84474-5_3. .
- 18. Norkin V.I., Gaivoronski A.A., Zaslavsky V.A., Knopov P.S. Models of the optimal resource allocation for the critical infrastructure protection. Cybernetics and Systems Analysis. 2018. Vol. 54, N 5. P. 696–706. https://doi.org/10.1007/s10559-018-0071-7. .
- 19. Pepelyaev V.A., Golodnikov A.N., Golodnikova N.A. Reliability optimization method alternative to bPOE. Cybernetics and Systems Analysis. 2022. Vol. 58, N 4. P. 593–597. https://doi.org/10.1007/s10559-022-00492-9. .
- 20. Pepelyaev V.A., Golodnikov A.N., Golodnikova N.A. A new method of reliability optimization in the classical problem statement. Cybernetics and Systems Analysis. 2022. Vol. 58, N 6. P. 917–922. https://doi.org/10.1007/s10559-023-00525-x. .
- 21. Golodnikov A.N., Knopov P.S., Pepelyaev V.A. Estimation of reliability parameters under incomplete primary information. Theory and Decision. 2004. Vol. 57, Iss. 4. P. 331–344. https://doi.org/10.1007/s11238-005-3217-9. .
- 22. Golodnikov A.N., Ermoliev Yu.M., Knopov P.S. Estimating reliability parameters under insufficient information. Cybernetics and Systems Analysis. 2010. Vol. 46, N 3. P. 443–459. https://doi.org/10.1007/s10559-010-9219-9. .
- 23. Daduna H., Knopov P.S. Optimal admission control for M/D/1/K queueing systems. Math. Meth. Oper. Res. 1999. Vol. 50, N 1. P. 91–100. https://doi.org/10.1007/s001860050037. .
- 24. Ermoliev Yu. Random optimization and stochastic programming. In: Colloqium on Methods of Optimization. Moiseev N.N. (Ed.). Lecture Notes in Mathematics. 1970. Vol. 112. P. 104–115. https://doi.org/10.1007/BFb0060200. .
- 25. Daduna H., Knopov P.S., Tur L.P. Optimal strategies for an inventory system with cost functions of general form. Cybernetics and Systems Analysis. 1999. Vol. 35, N 4. P. 602–618. https://doi.org/10.1007/BF02835856. .
- 26. Сhanssmann F. Operations reasarch in production and inventory control. New York; London: John Wiley, 1962. 278 p.
- 27. Knopov P.S., Kasitskaya E.J. On large deviations of empirical estimates in a stochastic programming problem with time-dependent observations. Cybernetics and Systems Analysis. 2010. Vol. 46, N 5. P. 724–728. https://doi.org/10.1007/s10559-010-9253-7. .
- 28. Knopov P.S., Kasitskaya E.I. Large deviations of empirical estimates in stochastic programming problems. Cybernetics and Systems Analysis. 2004. Vol. 40, N 4. P. 52–60. https://doi.org/10.1023/ .
- 29. Atoyev A., Knopov P., Pepeliaev V., Kisala P., Romaniuk R., Kalimoldayev M. The mathematical problems of complex systems investigation under uncertainties. In: Recent advances in information technology. Wojcik W., Sikora J. (Eds.). CRC Press, 2017. P. 135–171. http://dx.doi.org/10.1201/9781351243179-6. .
- 30. Derieva E.N., Pepelyaeva T.V. A problem of control of random processes. Cybernetics and Systems Analysis. 2004. Vol. 40, N 1. P. 97–101. https://doi.org/10.1023/ .