Cybernetics And Systems Analysis logo
Editorial Board Announcements Abstracts Authors Archive
KIBERNETYKA TA SYSTEMNYI ANALIZ
International Theoretical Science Journal
-->


DOI 10.34229/KCA2522-9664.25.1.7
UDC 519.6
V.L. Makarov1, N.V. Mayko2, V.L. Ryabichev3


1 Institute of Mathematics, National Academy
of Sciences of Ukraine, Kyiv, Ukraine

makarovimath@gmail.com

2 Taras Shevchenko National University of Kyiv, Kyiv, Ukraine

mayko@knu.ua

3 Taras Shevchenko National University of Kyiv, Kyiv, Ukraine

ryabichev@knu.ua

RECONSTRUCTING THE RECURRENCE RELATION FOR A SYSTEM
OF POLYNOMIALS USED IN A PROBLEM WITH A FRACTIONAL DERIVATIVE

Abstract. We develop and substantiate the algorithm of finding the recurrence relation of minimum order with polynomial coefficients over the field of rational numbers, whose solutions are a given system of polynomials (here, a system of the modified Laguerre–Cayley polynomials).

Keywords: system of the Laguerre–Cayley polynomials, the Mittag-Leffler function, recurrence relation, polynomial coefficient, rational number.


full text

REFERENCES

  • 1. Gavrilyuk I.P., Makarov V.L. The Cayley transform and the solution of an initial value problem for a first order differential equation with an unbounded operator coefficient in Hilbert space. Numerical Functional Analysis and Optimization. 1994. Vol. 15, N 5–6. P. 583–598. https://doi.org/10.1080/01630569408816582. .

  • 2. Havu V., Malinen J. The Cayley transform as a time discretization scheme. Numerical Functional Analysis and Optimization. 2007. Vol. 28, N 7–8. P. 825–851. http://dx.doi.org/10.1080/01630560701493321. .

  • 3. Makarov V.L., Mayko N.V., Ryabichev V.L. Unimprovable convergence rate estimates of the Cayley transform method for the approximation of the operator exponent in the Hilbert Space. Cybernetics and Systems Analysis. Vol. 59, N 6. P. 943–948. https://doi.org/10.1007/ s10559-023-00630-x. .

  • 4. Makarov V.L. Meixner polynomials and their properties. Dopov. NAN Ukrayiny. 2019. N 7. P. 3–8. URL: http://dx.doi.org/10.15407/dopovidi2019.07.003. .

  • 5. Mayko N.V. Super-exponential rate of convergence of the Cayley transform method for an abstract differential equation. Cybernetics and Systems Analysis. 2020. Vol. 56, N 3. P. 492–503. URL: https://doi. org/10.1007/s10559-020-00265-2. .

  • 6. Makarov V.L., Mayko N.V. Weighted estimates of the Cayley transform method for boundary value problems in a Banach space. Numerical Functional Analysis and Optimization. 2021. Vol. 42, N 2. P. 211–233. https://doi.org/10.1080/01630563.2020.1871010. .

  • 7. Gavrilyuk I.P., Makarov V.L., Mayko N.V. Weighted estimates of the Cayley transform method for abstract differential equations. Computational Methods in Applied Mathematics. 2021. Vol. 21, N 1. P. 53–68.

  • 8. Makarov V.L., Makarov S.V. Functions and Cayley polynomials. Dopov. NAN Ukrayiny. 2022. N 5. P. 3–9. https://doi.org/10.15407/dopovidi2022.05.003. .

  • 9. Gorenfo R., Kilbas A.A., Mainardi F., Rogosin S. Mittag-Leffler functions, related topics and applications. 2nd Edition. Springer, 2020. 548 p.

  • 10. Mclean W., Thomee V. Numerical solution via Laplace transforms of a fractional order evolution equation. J. Integral Equat. Appl. 2010. Vol. 22, N 1. P. 57–94. https://doi.org/ 10.1216/JIE-2010-22-1-57. .

  • 11. Makarov V.L., Maiko N.V., Ryabichev V.L. Recovery of a differential equation with polynomial coefficients using information about its solutions. Kibernetyka ta systemnyi analz. 2024. Vol. 60, N 5. P. 101–114.

  • 12. Rainville Е.D. Speсial functions. New York: The Macmillan Company, 1960. P. xii+365.

  • 13. Fasenmyer S.M.C. Some generalized hypergeometric polynomials. Bull. Amer. Math. Soc. 1947. Vol. 53. P. 806–812.

  • 14. Fasenmyer S.M.C. A note on pure recurrence relations. The American Mathematical Monthly. 1949. Vol. 56 (1P1), P. 14–17. https://doi.org/10.1080/00029890.1949.11990232. .




© 2025 Kibernetika.org. All rights reserved.