DOI
10.34229/KCA2522-9664.25.1.8
UDC 517.977.5
3 V.M. Glushkov Institute of Cybernetics, National Academy of Sciences of Ukraine, Kyiv, Ukraine
lyashko91@gmail.com
|
4 V.M. Glushkov Institute of Cybernetics, National Academy of Sciences of Ukraine, Kyiv, Ukraine
samosyonok@gmail.com
|
OPTIMAL CONTROL OF HYPERBOLIC INTEGRO-DIFFERENTIAL SYSTEMS
Abstract. We prove a priori inequalities for the class of linear integro-differential equations of hyperbolic type that arise in the analysis of viscoelastic media. Theorems of the existence and uniqueness of the generalized solution and the continuous dependence of the solution on the equation’s right-hand side are formulated. The problem of optimal control is given, and a theorem on the existence of its solution is formulated.
Keywords: a priori estimates, generalized solvability, optimal control, integro-differential equation, hyperbolic equation.
full text
REFERENCES
- 1. Cannarsa P., Sforza D. Integro-differential equations of hyperbolic type with positive definite kernels. Journal of Differential Equations. 2011. Vol. 250, Iss. 12. P. 4289–4335. https://doi.org/10.1016/j.jde.2011.03.005. .
- 2. Conti M., Gatti S., Pata V. Uniform decay properties of linear Volterra integro-differential equations. Mathematical Models and Methods in Applied Sciences. 2008. Vol. 18, Iss. 1. P. 21–45. https://doi.org/10.1142/S0218202508002590. .
- 3. Lakes R. Viscoelastic solids. CRC Press Revivals, 1998. 490 p. https://doi.org/10.1201/ 9781315121369. .
- 4. Kelly P. Solid mechanics lecture notes. The University of Auckland, 2013. URL: https://pkel015.connect.amazon.auckland.ac.nz/ .
- 5. Renardy M., Hrusa W., Nohel J. Mathematical problems in viscoelasticity. Pitman monographs and surveys in pure and applied mathematics. Vol. 35. Longman Science & Technology, 1987. 292 p.
- 6. Fabrizio M., Morro A. Mathematical problems in linear viscoelasticity. SIAM Studies in Applied Mathematics, 1992. 203 p. https://doi.org/10.1137/1.9781611970807. .
- 7. Loreti P., Sforza D. Reachability problems for a class of integro-differential equations. Journal of Differential Equations. 2010. Vol. 248, Iss. 7. P. 1711–1755. https://doi.org/10.1016/ j.jde.2009.09.016. .
- 8. Diagana T. Existence results for some damped second-order Volterra integro-differential equations. Applied Mathematics and Computation. 2014. Vol. 237. P. 304–317. https://doi.org/ 10.1016/j.amc.2014.03.105. .
- 9. Engler H. Weak solutions of a class of quasilinear hyperbolic integro-differential equations describing viscoelastic materials. Archive for Rational Mechanics and Analysis. 1991. Vol. 113, Iss. 1. P. 1–38. https://doi.org/10.1007/BF00380814. .
- 10. Gan X.-T., Yin J.-F. Symmetric finite volume element approximations of second order linear hyperbolic integro-differential equations. Computers and Mathematics with Applications. 2015. Vol. 70, Iss. 10. P. 2589–2600. https://doi.org/10.1016/j.camwa.2015.09.019. .
- 11. Karaa S., Pani A., Yadav S. A priori hp-estimates for discontinuous Galerkin approximations to linear hyperbolic integro-differential equations. Applied Numerical Mathematics. 2015. Vol. 96. P. 1–23. https://doi.org/10.1016/j.apnum.2015.04.006. .
- 12. Saedpanah F. Well-posedness of an integro-differential equation with positive type kernels modeling fractional order viscoelasticity. European Journal of Mechanics - A/Solids. 2014. Vol. 44. P. 201–211. https://doi.org/10.1016/j.euromechsol.2013.10.014. .
- 13. Shen W., Yang D., Liu W. Optimal control problem governed by a linear hyperbolic integro-differential equation and its finite element analysis. Boundary Value Problems. 2014. Article number 173 (2014). https://doi.org/10.1186/s13661-014-0173-8. .
- 14. Dafermos C. An abstract Volterra equation with applications to linear viscoelasticity. Journal of Differential Equations. 1970. Vol. 7, Iss. 3. P. 554–569. https://doi.org/10.1016/0022- 0396(70)90101-4. .
- 15. Anikushin A., Nomirovsky D. Trajectory-final controllability of hyperbolic systems in different classes of generalized functions. Bulletin of the Taras Shevchenko National University of Kyiv. Physical and Mathematical Sciences. 2008. Iss. 3. P. 119–124. URL: http://www.library.univ.kiev.ua/ukr/host/10.23.10.100/ .
- 16. Anikushin A. Generalized solvability of hyperbolic integro-differential equations. Bulletin of the Taras Shevchenko National University of Kyiv. Physical and Mathematical Sciences. 2013. Iss. 4. С. 60–65. URL: http://www.library.univ.kiev.ua/ ukr/host/10.23.10.100/ .
- 17. Berezanskii Ju.M. Expansions in eigenfunctions of selfadjoint operators. Translations of Mathematical Monographs Series. Vol. 17. Providence: American Mathematical Society, 1968. 809 p. URL: URL: https://bookstore.ams.org/mmono-17. .
- 18. Didenko V.P. On boundary value problems for multidimensional hyperbolic equations with degeneracy. Proceedings of the USSR Academy of Sciences. 1972. Vol. 205, Iss. 4. P. 763–766. (In Russian).
- 19. Lyashko S.I. Generalized optimal control of linear systems with distributed parameters. Kluwer Academic Publishers, 2002. 472 p. https://doi.org/10.1007/b130433. .
- 20. Klyushin D.A., Lyashko S.I., Nomirovskii D.A., Petunin Yu.I., Semenov V.V. Generalized solutions of operator equations and extreme elements. SOIA. Vol. 55. New York: Springer New York, 2013. 202 p. https://doi.org/10.1007/978-1-4614-0619-8. .
- 21. Anikushyn A., Nomirovskyi D. Generalized solutions for linear operators with weakened a priori inequalities. Ukrainian Mathematical Journal. 2011. Vol. 62, Iss. 8. P. 1175–1186. https://doi.org/10.1007/s11253-011-0435-x. .
- 22. Klyushin D.A., Lyashko S.I., Nomirovskii D.A., Petunin Yu.I., Semenov V.V. Applications of the theory of generalized solvability of linear equations. In: Generalized Solutions of Operator Equations and Extreme Elements. Springer Optimization and Its Applications. Vol. 55. New York: Springer New York, 2011. P. 29–101. https://doi.org/10.1007/978-1-4614-0619-8_4. .
- 23. Klyushin D.A., Lyashko S.I., Nomirovskii D.A., Petunin Yu.I., Semenov V.V. The simplest schemes of generalized solution of linear operator equation. In: Generalized Solutions of Operator Equations and Extreme Elements. Springer Optimization and Its Applications. Vol. 55. New York: Springer New York, 2011. P. 7–15. https://doi.org/10.1007/978-1-4614-0619-8 _2. .
- 24. Klyushin D.A., Lyashko S.I., Nomirovskii D.A., Petunin Yu.I., Semenov V.V. A priori estimates for linear continuous operators. In: Generalized Solutions of Operator Equations and Extreme Elements. Springer Optimization and Its Applications. Vol. 55. New York: Springer New York, 2011. P. 17–27. https://doi.org/10.1007/978-1-4614-0619-8_3. .
- 25. Sergienko I., Khimich O., Klyushin D., Lyashko V., Lyashko S., Semenov V. Formation and development of the scientific school of the mathematical theory of filtration. Cybernetics and Systems Analysis. 2023. Vol. 59, N 1. P. 61–70. https://doi.org/10.1007/s10559-023-00542-w. .
- 26. Nomirovskii D. Generalized solvability of parabolic systems with nonhomogeneous transmission conditions of nonideal contact type. Differential Equations. 2004. Vol. 40, Iss. 10. P. 1467–1477. https://doi.org/10.1007/s10625-004-0013-1. .
- 27. Lyashko S., Nomirovskii D. Generalized solutions and optimal controls in systems describing the dynamics of a viscous stratified fluid. Differential Equations. 2003. Vol. 39, Iss. 1. P. 90–98. https://doi.org/10.1023/A:1025176109884. .
- 28. Lyashko S., Nomirovskii D., Sergienko T. Trajectory and final controllability in hyperbolic and pseudohyperbolic systems with generalized actions. Cybernetics and Systems Analysis. 2001. Vol. 37, N 5. P. 756–763. https://doi.org/10.1023/A:1013871026026. .
- 29. Nomirovskii D. Unique solvability of pseudohyperbolic equations with singular right-hand sides. Mathematical Notes. 2006. Vol. 80, Iss. 3–4. P. 550–562. https://doi.org/10.1007/ s11006-006-0174-8. .
- 30. Nomirovskii D. The control of pseudohyperbolic systems. Journal of mathematical sciences. 1999. Vol. 97, Iss. 2. P. 3945–3951. https://doi.org/10.1007/BF02366385. .
- 31. Nomirovskii D. Generalized solvability and optimization of a parabolic system with a discontinuous solution. Journal of Differential Equations. 2007. Vol. 233, Iss. 1. P. 1–21. https://doi.org/10.1016/j.jde.2006.09.025. .
- 32. Nomirovskii D., Vostrikov O. Generalized statements and properties of models of transport processes in domains with cuts. Cybernetics and Systems Analysis. 2016. Vol. 52, N 6. P. 931–942. https://doi.org/10.1007/s10559-016-9895-1. .
- 33. Tymchyshyn I., Nomirovskii D. Generalized solvability of a parabolic model describing transfer processes in domains with thin inclusions. Differential Equations. 2021. Vol. 57, Iss. 8. P. 1053–1062. https://doi.org/10.1134/S0012266121080097. .
- 34. Anikushyn A., Lyashko V., Samosonok O. Optimal control of the systems governed by linear hyperbolic integro-differential equations. Bulletin of Taras Shevchenko National University of Kyiv. Series: Physics and Mathematics. 2024. Vol. 78, Iss. 1. P. 111–118. ttps://doi.org/ 10.17721/1812-5409.2024/1.22. .
- 35. Anikushyn A., Hulianytskyi A. Generalized solvability of parabolic integro-differential equations. Differential Equations. 2014. Vol. 50, Iss. 1. P. 98–109. URL: https://doi.org/10.3842/nosc.v27i1.1444. .
- 36. Anikushin A., Andaral A. Generalized optimal control of pseudoparabolic integro-differential systems. Nonlinear oscillations. 2024. Vol. 27, N 1. P. 3–18. https://doi.org/10.3842/nosc.v27i1.1444. .
- 37. Anikushyn A. Generalized optimal control for systems described by linear integro-differential equations with nonnegative definite integral operators. Journal of Automation and Information Science. 2014. Vol. 46, Iss. 6. P. 58–67. https://doi.org/10.1615/JAutomatInfScien.v46.i6.60. .