Cybernetics And Systems Analysis logo
Editorial Board Announcements Abstracts Authors Archive
KIBERNETYKA TA SYSTEMNYI ANALIZ
International Theoretical Science Journal
-->


DOI 10.34229/KCA2522-9664.25.1.12
UDC 519.21
I.K. Matsak1, S.M. Krasnitskiy2


1 Taras Shevchenko National University of Kyiv, Kyiv, Ukraine

i.m.k@ukr.net

2 Kyiv National University of Technologies and Design, Kyiv, Ukraine

krasnits.sm@ukr.net

ASYMPTOTIC BEHAVIOR OF THE EXTREME VALUES OF THE QUEUE LENGTHS
AND WAITING TIME IN M |G |1 AND GI |M |1 SYSTEMS

Abstract. The asymptotic behavior of the almost surely extreme values of the queue length and queueing time for queueing systems is analyzed. First, one general limit theorem on the asymptotics of extreme values of regenerative processes is considered. Further, applying this theorem to queueing systems M |G |1 and GI |M |1, the law of the repeated logarithm for lim sup and the law of the triple logarithm for lim inf are formulated, as well as some of their refinements.

Keywords: queuing systems M |G |1 and GI |M |1, extreme values, asymptotic behaviour almost surely .


full text

REFERENCES

  • 1. Gnedenko B.V., Kovalenko I.N. Introduction to queueing theory. Boston: Birkhauser, 1989. 315 p. https://doi:10.1007/978-1-4615-9826-8. .

  • 2. Riordan J. Stochastic service systems. New York: John Wiley, 1962. 184 p.

  • 3. Cohen J.W. Extreme values distribution for the M|G|1 and GI|M|1 queueing systems. Ann. Inst. H. Poincare. Sect. B. 1968. Vol. 4. P. 83–98.

  • 4. Anderson C.W. Extreme value theory for a class of discrete distribution with application to some stochastic processes. Journal of Applied Probability. 1970. Vol. 7. P. 99–113.

  • 5. Iglehart D.L. Extreme values in the GI/G/1 gueue. Annals of Mathematical Statistics. 1972. Vol. 43. P. 627–635.

  • 6. Serfozo R.F. Extreme values of birdh and death processes and queues. Stochastic Processess and Their Applications. 1988. Vol. 27. P. 291–306.

  • 7. Asmussen S. Applied probability and queues. 2-nd. ed. New York; Berlin; Heidelberg: Springer, 2003. 439 p.

  • 8. Asmussen S. Extreme values theory for queues via cycle maxima. Extremes. 1998. Vol. 1. P. 137–168.

  • 9. Gnedenko B.V. Sur la distribution limit du terme maximum d‘une serie aleatoire. Annals of Mathematics. 1943. Vol. 44, N 3. P. 423–453.

  • 10. Leadbetter M.R., Lindgren G., Rootzen H. Extremes and related properties of random sequences and processes. New York: Springer, 1983. 336 p. https://doi:10.1007/978-1- 4612-5449-2. .

  • 11. Glasserman P., Kou S.G. Limits of first passage times to rare sets in regenerative processes. Anal. Appl. Probab. 1995. Vol. 5. P. 424–445.

  • 12. Dovgai B.V., Matsak I.K. Asymptotic behavior of extreme values of queue length in mass service systems. Kibernetyka ta systemnyi analiz. 2019. Vol. 55, N 2. P. 171–179.

  • 13. Akbash K.S., Matsak I.K. Asymptotic behavior of extreme values of random variables and some stochastic processes. In: Stochastic Processes: Fundamentals and emerging applications. M. Moklyachuk (ed.). Nova Science Publishers, Inc., Chapter 1, 2023. P. 1–35.

  • 14. Feller W. An introduction to probability theory and its applications. Vol. 2. New York; London; Sydney; Toronto: John Wiley and Sons, 1968. 750 p.

  • 15. Smith W.L. Renewal theory and its ramifications. Journal of the Royal Statistical Society. 1958. Vol. 20, N 2. P. 243–302.

  • 16. Bingham N.H., Goldie C.M., Teugels J.L. Regular variation. Cambridge University Press, 1989. 479 p.

  • 17. Karlin S. A first course in stochastic processes. New York: Academic Press, 1968. 536 p.

  • 18. Akbash K.S., Doronina N.V., Matsak I.K. On extreme values of the queue length in some queuing systems. Georgian Mathematical Journal. 2024. Vol. 31, N 1. P. 1–16. https://doi.org/10.1515/gmj-2023-2055. .

  • 19. Prabhu N.U. Stochastic storage processes. New York; Heidelberg; Berlin: Springer, 1980. 154 p.




© 2025 Kibernetika.org. All rights reserved.